/* * Copyright (C) 2001-2003 Michael Niedermayer (michaelni@gmx.at) * * AltiVec optimizations (C) 2004 Romain Dolbeau * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file postprocess.c * postprocessing. */ /* C MMX MMX2 3DNow AltiVec isVertDC Ec Ec Ec isVertMinMaxOk Ec Ec Ec doVertLowPass E e e Ec doVertDefFilter Ec Ec e e Ec isHorizDC Ec Ec Ec isHorizMinMaxOk a E Ec doHorizLowPass E e e Ec doHorizDefFilter Ec Ec e e Ec do_a_deblock Ec E Ec E deRing E e e* Ecp Vertical RKAlgo1 E a a Horizontal RKAlgo1 a a Vertical X1# a E E Horizontal X1# a E E LinIpolDeinterlace e E E* CubicIpolDeinterlace a e e* LinBlendDeinterlace e E E* MedianDeinterlace# E Ec Ec TempDeNoiser# E e e Ec * i do not have a 3DNow! CPU -> it is untested, but no one said it does not work so it seems to work # more or less selfinvented filters so the exactness is not too meaningful E = Exact implementation e = allmost exact implementation (slightly different rounding,...) a = alternative / approximate impl c = checked against the other implementations (-vo md5) p = partially optimized, still some work to do */ /* TODO: reduce the time wasted on the mem transfer unroll stuff if instructions depend too much on the prior one move YScale thing to the end instead of fixing QP write a faster and higher quality deblocking filter :) make the mainloop more flexible (variable number of blocks at once (the if/else stuff per block is slowing things down) compare the quality & speed of all filters split this huge file optimize c versions try to unroll inner for(x=0 ... loop to avoid these damn if(x ... checks ... */ //Changelog: use the Subversion log #include "config.h" #include "avutil.h" #include #include #include #include #ifdef HAVE_MALLOC_H #include #endif //#undef HAVE_MMX2 //#define HAVE_3DNOW //#undef HAVE_MMX //#undef ARCH_X86 //#define DEBUG_BRIGHTNESS #include "postprocess.h" #include "postprocess_internal.h" #ifdef HAVE_ALTIVEC_H #include #endif #define GET_MODE_BUFFER_SIZE 500 #define OPTIONS_ARRAY_SIZE 10 #define BLOCK_SIZE 8 #define TEMP_STRIDE 8 //#define NUM_BLOCKS_AT_ONCE 16 //not used yet #if defined(ARCH_X86) static DECLARE_ALIGNED(8, uint64_t attribute_used, w05)= 0x0005000500050005LL; static DECLARE_ALIGNED(8, uint64_t attribute_used, w04)= 0x0004000400040004LL; static DECLARE_ALIGNED(8, uint64_t attribute_used, w20)= 0x0020002000200020LL; static DECLARE_ALIGNED(8, uint64_t attribute_used, b00)= 0x0000000000000000LL; static DECLARE_ALIGNED(8, uint64_t attribute_used, b01)= 0x0101010101010101LL; static DECLARE_ALIGNED(8, uint64_t attribute_used, b02)= 0x0202020202020202LL; static DECLARE_ALIGNED(8, uint64_t attribute_used, b08)= 0x0808080808080808LL; static DECLARE_ALIGNED(8, uint64_t attribute_used, b80)= 0x8080808080808080LL; #endif static const int attribute_used deringThreshold= 20; static struct PPFilter filters[]= { {"hb", "hdeblock", 1, 1, 3, H_DEBLOCK}, {"vb", "vdeblock", 1, 2, 4, V_DEBLOCK}, /* {"hr", "rkhdeblock", 1, 1, 3, H_RK1_FILTER}, {"vr", "rkvdeblock", 1, 2, 4, V_RK1_FILTER},*/ {"h1", "x1hdeblock", 1, 1, 3, H_X1_FILTER}, {"v1", "x1vdeblock", 1, 2, 4, V_X1_FILTER}, {"ha", "ahdeblock", 1, 1, 3, H_A_DEBLOCK}, {"va", "avdeblock", 1, 2, 4, V_A_DEBLOCK}, {"dr", "dering", 1, 5, 6, DERING}, {"al", "autolevels", 0, 1, 2, LEVEL_FIX}, {"lb", "linblenddeint", 1, 1, 4, LINEAR_BLEND_DEINT_FILTER}, {"li", "linipoldeint", 1, 1, 4, LINEAR_IPOL_DEINT_FILTER}, {"ci", "cubicipoldeint", 1, 1, 4, CUBIC_IPOL_DEINT_FILTER}, {"md", "mediandeint", 1, 1, 4, MEDIAN_DEINT_FILTER}, {"fd", "ffmpegdeint", 1, 1, 4, FFMPEG_DEINT_FILTER}, {"l5", "lowpass5", 1, 1, 4, LOWPASS5_DEINT_FILTER}, {"tn", "tmpnoise", 1, 7, 8, TEMP_NOISE_FILTER}, {"fq", "forcequant", 1, 0, 0, FORCE_QUANT}, {NULL, NULL,0,0,0,0} //End Marker }; static const char *replaceTable[]= { "default", "hb:a,vb:a,dr:a", "de", "hb:a,vb:a,dr:a", "fast", "h1:a,v1:a,dr:a", "fa", "h1:a,v1:a,dr:a", "ac", "ha:a:128:7,va:a,dr:a", NULL //End Marker }; #if defined(ARCH_X86) static inline void prefetchnta(void *p) { asm volatile( "prefetchnta (%0)\n\t" : : "r" (p) ); } static inline void prefetcht0(void *p) { asm volatile( "prefetcht0 (%0)\n\t" : : "r" (p) ); } static inline void prefetcht1(void *p) { asm volatile( "prefetcht1 (%0)\n\t" : : "r" (p) ); } static inline void prefetcht2(void *p) { asm volatile( "prefetcht2 (%0)\n\t" : : "r" (p) ); } #endif // The horizontal Functions exist only in C cuz the MMX code is faster with vertical filters and transposing /** * Check if the given 8x8 Block is mostly "flat" */ static inline int isHorizDC_C(uint8_t src[], int stride, PPContext *c) { int numEq= 0; int y; const int dcOffset= ((c->nonBQP*c->ppMode.baseDcDiff)>>8) + 1; const int dcThreshold= dcOffset*2 + 1; for(y=0; y c->ppMode.flatnessThreshold; } /** * Check if the middle 8x8 Block in the given 8x16 block is flat */ static inline int isVertDC_C(uint8_t src[], int stride, PPContext *c){ int numEq= 0; int y; const int dcOffset= ((c->nonBQP*c->ppMode.baseDcDiff)>>8) + 1; const int dcThreshold= dcOffset*2 + 1; src+= stride*4; // src points to begin of the 8x8 Block for(y=0; y c->ppMode.flatnessThreshold; } static inline int isHorizMinMaxOk_C(uint8_t src[], int stride, int QP) { int i; #if 1 for(i=0; i<2; i++){ if((unsigned)(src[0] - src[5] + 2*QP) > 4*QP) return 0; src += stride; if((unsigned)(src[2] - src[7] + 2*QP) > 4*QP) return 0; src += stride; if((unsigned)(src[4] - src[1] + 2*QP) > 4*QP) return 0; src += stride; if((unsigned)(src[6] - src[3] + 2*QP) > 4*QP) return 0; src += stride; } #else for(i=0; i<8; i++){ if((unsigned)(src[0] - src[7] + 2*QP) > 4*QP) return 0; src += stride; } #endif return 1; } static inline int isVertMinMaxOk_C(uint8_t src[], int stride, int QP) { #if 1 #if 1 int x; src+= stride*4; for(x=0; x 4*QP) return 0; if((unsigned)(src[1+x + 2*stride] - src[1+x + 7*stride] + 2*QP) > 4*QP) return 0; if((unsigned)(src[2+x + 4*stride] - src[2+x + 1*stride] + 2*QP) > 4*QP) return 0; if((unsigned)(src[3+x + 6*stride] - src[3+x + 3*stride] + 2*QP) > 4*QP) return 0; } #else int x; src+= stride*3; for(x=0; x 4*QP) return 0; } #endif return 1; #else int x; src+= stride*4; for(x=0; xmax) max=v; if(v 2*QP) return 0; } return 1; #endif } static inline int horizClassify_C(uint8_t src[], int stride, PPContext *c){ if( isHorizDC_C(src, stride, c) ){ if( isHorizMinMaxOk_C(src, stride, c->QP) ) return 1; else return 0; }else{ return 2; } } static inline int vertClassify_C(uint8_t src[], int stride, PPContext *c){ if( isVertDC_C(src, stride, c) ){ if( isVertMinMaxOk_C(src, stride, c->QP) ) return 1; else return 0; }else{ return 2; } } static inline void doHorizDefFilter_C(uint8_t dst[], int stride, PPContext *c) { int y; for(y=0; yQP) { const int q=(dst[3] - dst[4])/2; const int leftEnergy= 5*(dst[2] - dst[1]) + 2*(dst[0] - dst[3]); const int rightEnergy= 5*(dst[6] - dst[5]) + 2*(dst[4] - dst[7]); int d= FFABS(middleEnergy) - FFMIN( FFABS(leftEnergy), FFABS(rightEnergy) ); d= FFMAX(d, 0); d= (5*d + 32) >> 6; d*= FFSIGN(-middleEnergy); if(q>0) { d= d<0 ? 0 : d; d= d>q ? q : d; } else { d= d>0 ? 0 : d; d= dQP ? dst[-1] : dst[0]; const int last= FFABS(dst[8] - dst[7]) < c->QP ? dst[8] : dst[7]; int sums[10]; sums[0] = 4*first + dst[0] + dst[1] + dst[2] + 4; sums[1] = sums[0] - first + dst[3]; sums[2] = sums[1] - first + dst[4]; sums[3] = sums[2] - first + dst[5]; sums[4] = sums[3] - first + dst[6]; sums[5] = sums[4] - dst[0] + dst[7]; sums[6] = sums[5] - dst[1] + last; sums[7] = sums[6] - dst[2] + last; sums[8] = sums[7] - dst[3] + last; sums[9] = sums[8] - dst[4] + last; dst[0]= (sums[0] + sums[2] + 2*dst[0])>>4; dst[1]= (sums[1] + sums[3] + 2*dst[1])>>4; dst[2]= (sums[2] + sums[4] + 2*dst[2])>>4; dst[3]= (sums[3] + sums[5] + 2*dst[3])>>4; dst[4]= (sums[4] + sums[6] + 2*dst[4])>>4; dst[5]= (sums[5] + sums[7] + 2*dst[5])>>4; dst[6]= (sums[6] + sums[8] + 2*dst[6])>>4; dst[7]= (sums[7] + sums[9] + 2*dst[7])>>4; dst+= stride; } } /** * Experimental Filter 1 (Horizontal) * will not damage linear gradients * Flat blocks should look like they where passed through the (1,1,2,2,4,2,2,1,1) 9-Tap filter * can only smooth blocks at the expected locations (it cannot smooth them if they did move) * MMX2 version does correct clipping C version does not * not identical with the vertical one */ static inline void horizX1Filter(uint8_t *src, int stride, int QP) { int y; static uint64_t *lut= NULL; if(lut==NULL) { int i; lut = av_malloc(256*8); for(i=0; i<256; i++) { int v= i < 128 ? 2*i : 2*(i-256); /* //Simulate 112242211 9-Tap filter uint64_t a= (v/16) & 0xFF; uint64_t b= (v/8) & 0xFF; uint64_t c= (v/4) & 0xFF; uint64_t d= (3*v/8) & 0xFF; */ //Simulate piecewise linear interpolation uint64_t a= (v/16) & 0xFF; uint64_t b= (v*3/16) & 0xFF; uint64_t c= (v*5/16) & 0xFF; uint64_t d= (7*v/16) & 0xFF; uint64_t A= (0x100 - a)&0xFF; uint64_t B= (0x100 - b)&0xFF; uint64_t C= (0x100 - c)&0xFF; uint64_t D= (0x100 - c)&0xFF; lut[i] = (a<<56) | (b<<48) | (c<<40) | (d<<32) | (D<<24) | (C<<16) | (B<<8) | (A); //lut[i] = (v<<32) | (v<<24); } } for(y=0; yQP; const int dcOffset= ((c->nonBQP*c->ppMode.baseDcDiff)>>8) + 1; const int dcThreshold= dcOffset*2 + 1; //START_TIMER src+= step*4; // src points to begin of the 8x8 Block for(y=0; y<8; y++){ int numEq= 0; if(((unsigned)(src[-1*step] - src[0*step] + dcOffset)) < dcThreshold) numEq++; if(((unsigned)(src[ 0*step] - src[1*step] + dcOffset)) < dcThreshold) numEq++; if(((unsigned)(src[ 1*step] - src[2*step] + dcOffset)) < dcThreshold) numEq++; if(((unsigned)(src[ 2*step] - src[3*step] + dcOffset)) < dcThreshold) numEq++; if(((unsigned)(src[ 3*step] - src[4*step] + dcOffset)) < dcThreshold) numEq++; if(((unsigned)(src[ 4*step] - src[5*step] + dcOffset)) < dcThreshold) numEq++; if(((unsigned)(src[ 5*step] - src[6*step] + dcOffset)) < dcThreshold) numEq++; if(((unsigned)(src[ 6*step] - src[7*step] + dcOffset)) < dcThreshold) numEq++; if(((unsigned)(src[ 7*step] - src[8*step] + dcOffset)) < dcThreshold) numEq++; if(numEq > c->ppMode.flatnessThreshold){ int min, max, x; if(src[0] > src[step]){ max= src[0]; min= src[step]; }else{ max= src[step]; min= src[0]; } for(x=2; x<8; x+=2){ if(src[x*step] > src[(x+1)*step]){ if(src[x *step] > max) max= src[ x *step]; if(src[(x+1)*step] < min) min= src[(x+1)*step]; }else{ if(src[(x+1)*step] > max) max= src[(x+1)*step]; if(src[ x *step] < min) min= src[ x *step]; } } if(max-min < 2*QP){ const int first= FFABS(src[-1*step] - src[0]) < QP ? src[-1*step] : src[0]; const int last= FFABS(src[8*step] - src[7*step]) < QP ? src[8*step] : src[7*step]; int sums[10]; sums[0] = 4*first + src[0*step] + src[1*step] + src[2*step] + 4; sums[1] = sums[0] - first + src[3*step]; sums[2] = sums[1] - first + src[4*step]; sums[3] = sums[2] - first + src[5*step]; sums[4] = sums[3] - first + src[6*step]; sums[5] = sums[4] - src[0*step] + src[7*step]; sums[6] = sums[5] - src[1*step] + last; sums[7] = sums[6] - src[2*step] + last; sums[8] = sums[7] - src[3*step] + last; sums[9] = sums[8] - src[4*step] + last; src[0*step]= (sums[0] + sums[2] + 2*src[0*step])>>4; src[1*step]= (sums[1] + sums[3] + 2*src[1*step])>>4; src[2*step]= (sums[2] + sums[4] + 2*src[2*step])>>4; src[3*step]= (sums[3] + sums[5] + 2*src[3*step])>>4; src[4*step]= (sums[4] + sums[6] + 2*src[4*step])>>4; src[5*step]= (sums[5] + sums[7] + 2*src[5*step])>>4; src[6*step]= (sums[6] + sums[8] + 2*src[6*step])>>4; src[7*step]= (sums[7] + sums[9] + 2*src[7*step])>>4; } }else{ const int middleEnergy= 5*(src[4*step] - src[3*step]) + 2*(src[2*step] - src[5*step]); if(FFABS(middleEnergy) < 8*QP) { const int q=(src[3*step] - src[4*step])/2; const int leftEnergy= 5*(src[2*step] - src[1*step]) + 2*(src[0*step] - src[3*step]); const int rightEnergy= 5*(src[6*step] - src[5*step]) + 2*(src[4*step] - src[7*step]); int d= FFABS(middleEnergy) - FFMIN( FFABS(leftEnergy), FFABS(rightEnergy) ); d= FFMAX(d, 0); d= (5*d + 32) >> 6; d*= FFSIGN(-middleEnergy); if(q>0) { d= d<0 ? 0 : d; d= d>q ? q : d; } else { d= d>0 ? 0 : d; d= dppMode= *ppMode; //FIXME // Using ifs here as they are faster than function pointers although the // difference would not be measureable here but it is much better because // someone might exchange the CPU whithout restarting MPlayer ;) #ifdef RUNTIME_CPUDETECT #if defined(ARCH_X86) // ordered per speed fasterst first if(c->cpuCaps & PP_CPU_CAPS_MMX2) postProcess_MMX2(src, srcStride, dst, dstStride, width, height, QPs, QPStride, isColor, c); else if(c->cpuCaps & PP_CPU_CAPS_3DNOW) postProcess_3DNow(src, srcStride, dst, dstStride, width, height, QPs, QPStride, isColor, c); else if(c->cpuCaps & PP_CPU_CAPS_MMX) postProcess_MMX(src, srcStride, dst, dstStride, width, height, QPs, QPStride, isColor, c); else postProcess_C(src, srcStride, dst, dstStride, width, height, QPs, QPStride, isColor, c); #else #ifdef ARCH_POWERPC #ifdef HAVE_ALTIVEC if(c->cpuCaps & PP_CPU_CAPS_ALTIVEC) postProcess_altivec(src, srcStride, dst, dstStride, width, height, QPs, QPStride, isColor, c); else #endif #endif postProcess_C(src, srcStride, dst, dstStride, width, height, QPs, QPStride, isColor, c); #endif #else //RUNTIME_CPUDETECT #ifdef HAVE_MMX2 postProcess_MMX2(src, srcStride, dst, dstStride, width, height, QPs, QPStride, isColor, c); #elif defined (HAVE_3DNOW) postProcess_3DNow(src, srcStride, dst, dstStride, width, height, QPs, QPStride, isColor, c); #elif defined (HAVE_MMX) postProcess_MMX(src, srcStride, dst, dstStride, width, height, QPs, QPStride, isColor, c); #elif defined (HAVE_ALTIVEC) postProcess_altivec(src, srcStride, dst, dstStride, width, height, QPs, QPStride, isColor, c); #else postProcess_C(src, srcStride, dst, dstStride, width, height, QPs, QPStride, isColor, c); #endif #endif //!RUNTIME_CPUDETECT } //static void postProcess(uint8_t src[], int srcStride, uint8_t dst[], int dstStride, int width, int height, // QP_STORE_T QPs[], int QPStride, int isColor, struct PPMode *ppMode); /* -pp Command line Help */ #if LIBPOSTPROC_VERSION_INT < (52<<16) const char *const pp_help= #else const char pp_help[] = #endif "Available postprocessing filters:\n" "Filters Options\n" "short long name short long option Description\n" "* * a autoq CPU power dependent enabler\n" " c chrom chrominance filtering enabled\n" " y nochrom chrominance filtering disabled\n" " n noluma luma filtering disabled\n" "hb hdeblock (2 threshold) horizontal deblocking filter\n" " 1. difference factor: default=32, higher -> more deblocking\n" " 2. flatness threshold: default=39, lower -> more deblocking\n" " the h & v deblocking filters share these\n" " so you can't set different thresholds for h / v\n" "vb vdeblock (2 threshold) vertical deblocking filter\n" "ha hadeblock (2 threshold) horizontal deblocking filter\n" "va vadeblock (2 threshold) vertical deblocking filter\n" "h1 x1hdeblock experimental h deblock filter 1\n" "v1 x1vdeblock experimental v deblock filter 1\n" "dr dering deringing filter\n" "al autolevels automatic brightness / contrast\n" " f fullyrange stretch luminance to (0..255)\n" "lb linblenddeint linear blend deinterlacer\n" "li linipoldeint linear interpolating deinterlace\n" "ci cubicipoldeint cubic interpolating deinterlacer\n" "md mediandeint median deinterlacer\n" "fd ffmpegdeint ffmpeg deinterlacer\n" "l5 lowpass5 FIR lowpass deinterlacer\n" "de default hb:a,vb:a,dr:a\n" "fa fast h1:a,v1:a,dr:a\n" "ac ha:a:128:7,va:a,dr:a\n" "tn tmpnoise (3 threshold) temporal noise reducer\n" " 1. <= 2. <= 3. larger -> stronger filtering\n" "fq forceQuant force quantizer\n" "Usage:\n" "[: