mkvtoolnix/p_vorbis.cpp

231 lines
7.1 KiB
C++

/*
mkvmerge -- utility for splicing together matroska files
from component media subtypes
p_vorbis.h
Written by Moritz Bunkus <moritz@bunkus.org>
Distributed under the GPL
see the file COPYING for details
or visit http://www.gnu.org/copyleft/gpl.html
*/
/*!
\file
\version \$Id: p_vorbis.cpp,v 1.5 2003/03/05 13:51:20 mosu Exp $
\brief Vorbis packetizer
\author Moritz Bunkus <moritz @ bunkus.org>
*/
#include "config.h"
#ifdef HAVE_OGGVORBIS
#include <malloc.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <ogg/ogg.h>
#include <vorbis/codec.h>
#include "common.h"
#include "pr_generic.h"
#include "p_vorbis.h"
// #include "vorbis_header_utils.h"
#include "KaxTracks.h"
#include "KaxTrackAudio.h"
#ifdef DMALLOC
#include <dmalloc.h>
#endif
vorbis_packetizer_c::vorbis_packetizer_c(unsigned char *d_header, int l_header,
unsigned char *d_comments,
int l_comments,
unsigned char *d_codecsetup,
int l_codecsetup, track_info_t *nti)
throw (error_c): q_c(nti) {
int i;
packetno = 0;
last_bs = 0;
samples = 0;
memset(headers, 0, 3 * sizeof(ogg_packet));
headers[0].packet = (unsigned char *)malloc(l_header);
headers[1].packet = (unsigned char *)malloc(l_comments);
headers[2].packet = (unsigned char *)malloc(l_codecsetup);
if ((headers[0].packet == NULL) || (headers[1].packet == NULL) ||
(headers[2].packet == NULL))
die("malloc");
memcpy(headers[0].packet, d_header, l_header);
memcpy(headers[1].packet, d_comments, l_comments);
memcpy(headers[2].packet, d_codecsetup, l_codecsetup);
headers[0].bytes = l_header;
headers[1].bytes = l_comments;
headers[2].bytes = l_codecsetup;
headers[0].b_o_s = 1;
headers[1].packetno = 1;
headers[2].packetno = 2;
vorbis_info_init(&vi);
vorbis_comment_init(&vc);
for (i = 0; i < 3; i++)
if (vorbis_synthesis_headerin(&vi, &vc, &headers[i]) < 0)
throw error_c("Error: vorbis_packetizer: Could not extract the "
"stream's parameters from the first packets.\n");
set_header();
}
vorbis_packetizer_c::~vorbis_packetizer_c() {
int i;
for (i = 0; i < 3; i++)
if (headers[i].packet != NULL)
free(headers[i].packet);
}
#define AVORBIS "A_VORBIS"
void vorbis_packetizer_c::set_header() {
using namespace LIBMATROSKA_NAMESPACE;
unsigned char *buffer;
int n, offset, i, lsize;
if (kax_last_entry == NULL)
track_entry =
&GetChild<KaxTrackEntry>(static_cast<KaxTracks &>(*kax_tracks));
else
track_entry =
&GetNextChild<KaxTrackEntry>(static_cast<KaxTracks &>(*kax_tracks),
static_cast<KaxTrackEntry &>(*kax_last_entry));
kax_last_entry = track_entry;
if (serialno == -1)
serialno = track_number++;
KaxTrackNumber &tnumber =
GetChild<KaxTrackNumber>(static_cast<KaxTrackEntry &>(*track_entry));
*(static_cast<EbmlUInteger *>(&tnumber)) = serialno;
*(static_cast<EbmlUInteger *>
(&GetChild<KaxTrackType>(static_cast<KaxTrackEntry &>(*track_entry)))) =
track_audio;
KaxCodecID &codec_id =
GetChild<KaxCodecID>(static_cast<KaxTrackEntry &>(*track_entry));
codec_id.CopyBuffer((binary *)AVORBIS, countof(AVORBIS));
KaxTrackAudio &track_audio =
GetChild<KaxTrackAudio>(static_cast<KaxTrackEntry &>(*track_entry));
KaxAudioSamplingFreq &kax_freq = GetChild<KaxAudioSamplingFreq>(track_audio);
*(static_cast<EbmlFloat *>(&kax_freq)) = (float)vi.rate;
KaxAudioChannels &kax_chans = GetChild<KaxAudioChannels>(track_audio);
*(static_cast<EbmlUInteger *>(&kax_chans)) = vi.channels;
// We use lacing for the blocks. The first bytes is the number of
// packets being laced. For each packet in the lace there's the length
// coded like this:
// length = 0
// while (next byte == 255) { length += 255 }
// length += this byte which is < 255
// The last packet's length can be calculated by the length of
// the KaxCodecPrivate and all prior packets, so there's no length for it.
lsize = 1 + (headers[0].bytes / 255) + 1 + (headers[1].bytes / 255) + 1 +
headers[0].bytes + headers[1].bytes + headers[2].bytes;
buffer = (unsigned char *)malloc(lsize);
if (buffer == NULL)
die("malloc");
buffer[0] = 3; // The number of packets.
offset = 1;
for (i = 0; i < 2; i++) {
for (n = headers[i].bytes; n >= 255; n -= 255) {
buffer[offset] = 255;
offset++;
}
buffer[offset] = n;
offset++;
memcpy(&buffer[offset], headers[i].packet, headers[i].bytes);
offset += headers[i].bytes;
}
memcpy(&buffer[offset], headers[2].packet, headers[2].bytes);
KaxCodecPrivate &codec_private =
GetChild<KaxCodecPrivate>(static_cast<KaxTrackEntry &>(*track_entry));
codec_private.CopyBuffer((binary *)buffer, lsize);
free(buffer);
}
/*
* Some notes - processing is straight-forward if no AV synchronization
* is needed - the packet is simply stored in the Matroska file.
* Unfortunately things are not that easy if AV sync is done. For a
* negative displacement packets are simply discarded if their timecode
* is set before the displacement. For positive displacements the packetizer
* has to generate silence packets and put them into the Matroska file first.
*/
int vorbis_packetizer_c::process(unsigned char *data, int size,
int64_t timecode) {
unsigned char zero[2];
ogg_packet op;
u_int64_t this_bs, samples_here, samples_needed;
// Recalculate the timecode if needed.
if (timecode == -1)
timecode = samples * 1000 / vi.rate;
// Positive displacement, first packet? Well then lets create silence.
if ((packetno == 0) && (ti->async.displacement > 0)) {
// Create a fake packet so we can use vorbis_packet_blocksize().
zero[0] = 0;
zero[1] = 0;
memset(&op, 0, sizeof(ogg_packet));
op.packet = zero;
op.bytes = 2;
// Calculate how many samples we have to create.
samples_needed = vi.rate * 1000 / ti->async.displacement;
this_bs = vorbis_packet_blocksize(&vi, &op);
samples_here = (this_bs + last_bs) / 4;
while ((samples + samples_here) < samples_needed) {
samples += samples_here;
last_bs = this_bs;
samples_here = (this_bs + last_bs) / 4;
add_packet(zero, 2, samples * 1000 / vi.rate);
}
ti->async.displacement = 0;
}
// Update the number of samples we have processed so that we can
// calculate the timecode on the next call.
op.packet = data;
op.bytes = size;
this_bs = vorbis_packet_blocksize(&vi, &op);
samples_here = (this_bs + last_bs) / 4;
samples += samples_here;
last_bs = this_bs;
// Handle the displacement.
timecode += ti->async.displacement;
// Handle the linear sync - simply multiply with the given factor.
timecode = (int64_t)((double)timecode * ti->async.linear);
// If a negative sync value was used we may have to skip this packet.
if (timecode < 0)
return EMOREDATA;
add_packet(data, size, (u_int64_t)timecode);
return EMOREDATA;
}
#endif // HAVE_OGGVORBIS