
1 / 65

[MS-SSTR] - v20241119
Smooth Streaming Protocol
Copyright © 2024 Microsoft Corporation
Release: November 19, 2024

[MS-SSTR]:

Smooth Streaming Protocol

Intellectual Property Rights Notice for Open Specifications Documentation

 Technical Documentation. Microsoft publishes Open Specifications documentation (“this
documentation”) for protocols, file formats, data portability, computer languages, and standards
support. Additionally, overview documents cover inter-protocol relationships and interactions.

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other
terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you can make copies of it in order to develop implementations of the technologies
that are described in this documentation and can distribute portions of it in your implementations

that use these technologies or in your documentation as necessary to properly document the
implementation. You can also distribute in your implementation, with or without modification, any
schemas, IDLs, or code samples that are included in the documentation. This permission also

applies to any documents that are referenced in the Open Specifications documentation.
 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.
 Patents. Microsoft has patents that might cover your implementations of the technologies

described in the Open Specifications documentation. Neither this notice nor Microsoft's delivery of
this documentation grants any licenses under those patents or any other Microsoft patents.
However, a given Open Specifications document might be covered by the Microsoft Open
Specifications Promise or the Microsoft Community Promise. If you would prefer a written license,

or if the technologies described in this documentation are not covered by the Open Specifications
Promise or Community Promise, as applicable, patent licenses are available by contacting
iplg@microsoft.com.

 License Programs. To see all of the protocols in scope under a specific license program and the
associated patents, visit the Patent Map.

 Trademarks. The names of companies and products contained in this documentation might be

covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights. For a list of Microsoft trademarks, visit
www.microsoft.com/trademarks.

 Fictitious Names. The example companies, organizations, products, domain names, email
addresses, logos, people, places, and events that are depicted in this documentation are fictitious.
No association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or should be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights other
than as specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications documentation does not require the use of Microsoft programming
tools or programming environments in order for you to develop an implementation. If you have access
to Microsoft programming tools and environments, you are free to take advantage of them. Certain
Open Specifications documents are intended for use in conjunction with publicly available standards
specifications and network programming art and, as such, assume that the reader either is familiar

with the aforementioned material or has immediate access to it.

Support. For questions and support, please contact dochelp@microsoft.com.

https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214445
https://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
https://aka.ms/AA9ufj8
https://www.microsoft.com/trademarks
mailto:dochelp@microsoft.com

2 / 65

[MS-SSTR] - v20241119
Smooth Streaming Protocol
Copyright © 2024 Microsoft Corporation
Release: November 19, 2024

Revision Summary

Date
Revision
History

Revision
Class Comments

6/4/2010 0.1 Major First Release.

7/16/2010 0.1 None
No changes to the meaning, language, or formatting of the
technical content.

8/27/2010 0.1 None
No changes to the meaning, language, or formatting of the
technical content.

10/8/2010 0.2 Minor Clarified the meaning of the technical content.

11/19/2010 0.2 None
No changes to the meaning, language, or formatting of the

technical content.

1/7/2011 0.2 None
No changes to the meaning, language, or formatting of the
technical content.

2/11/2011 0.2 None
No changes to the meaning, language, or formatting of the
technical content.

3/25/2011 0.2 None
No changes to the meaning, language, or formatting of the
technical content.

5/6/2011 0.2.1 Editorial Changed language and formatting in the technical content.

6/17/2011 0.3 Minor Clarified the meaning of the technical content.

9/23/2011 0.3 None
No changes to the meaning, language, or formatting of the
technical content.

12/16/2011 1.0 Major Updated and revised the technical content.

3/30/2012 2.0 Major Updated and revised the technical content.

7/12/2012 2.1 Minor Clarified the meaning of the technical content.

10/25/2012 3.0 Major Updated and revised the technical content.

1/31/2013 3.0 None
No changes to the meaning, language, or formatting of the
technical content.

8/8/2013 4.0 Major Updated and revised the technical content.

11/14/2013 5.0 Major Updated and revised the technical content.

2/13/2014 6.0 Major Updated and revised the technical content.

5/15/2014 6.0 None
No changes to the meaning, language, or formatting of the
technical content.

6/30/2015 6.0 None
No changes to the meaning, language, or formatting of the
technical content.

7/14/2016 7.0 Major Significantly changed the technical content.

6/1/2017 7.0 None
No changes to the meaning, language, or formatting of the
technical content.

9/15/2017 8.0 Major Significantly changed the technical content.

3/16/2018 9.0 Major Significantly changed the technical content.

3 / 65

[MS-SSTR] - v20241119
Smooth Streaming Protocol
Copyright © 2024 Microsoft Corporation
Release: November 19, 2024

Date
Revision
History

Revision
Class Comments

9/12/2018 10.0 Major Significantly changed the technical content.

11/19/2024 11.0 Major Significantly changed the technical content.

4 / 65

[MS-SSTR] - v20241119
Smooth Streaming Protocol
Copyright © 2024 Microsoft Corporation
Release: November 19, 2024

Table of Contents

1 Introduction .. 6
1.1 Glossary ... 6
1.2 References .. 7

1.2.1 Normative References ... 7
1.2.2 Informative References ... 8

1.3 Overview .. 8
1.4 Relationship to Other Protocols .. 10
1.5 Prerequisites/Preconditions ... 10
1.6 Applicability Statement ... 10
1.7 Versioning and Capability Negotiation ... 11
1.8 Vendor-Extensible Fields ... 11
1.9 Standards Assignments ... 11

2 Messages ... 12
2.1 Transport .. 12
2.2 Message Syntax ... 12

2.2.1 Manifest Request .. 14
2.2.2 Manifest Response .. 15

2.2.2.1 SmoothStreamingMedia ... 16
2.2.2.2 ProtectionElement ... 17
2.2.2.3 StreamElement ... 18
2.2.2.4 UrlPattern .. 20
2.2.2.5 TrackElement ... 20

2.2.2.5.1 CustomAttributesElement ... 23
2.2.2.6 StreamFragmentElement ... 24

2.2.2.6.1 TrackFragmentElement .. 25
2.2.3 Fragment Request .. 26
2.2.4 Fragment Response .. 27

2.2.4.1 MoofBox .. 27
2.2.4.2 MfhdBox .. 28
2.2.4.3 TrafBox.. 28
2.2.4.4 TfxdBox ... 29
2.2.4.5 TfrfBox .. 30
2.2.4.6 TfhdBox ... 31
2.2.4.7 TrunBox ... 32
2.2.4.8 MdatBox .. 34
2.2.4.9 Fragment Response Common Fields .. 34

2.2.5 Sparse Stream Pointer .. 36
2.2.6 Fragment Not Yet Available .. 36
2.2.7 Live Ingest... 36

2.2.7.1 FileType ... 37
2.2.7.2 StreamManifestBox ... 37

2.2.7.2.1 StreamSMIL .. 38
2.2.7.3 LiveServerManifestBox... 39

2.2.7.3.1 LiveSMIL .. 39
2.2.7.4 MoovBox .. 41
2.2.7.5 Fragment ... 41

2.2.7.5.1 Track Fragment Extended Header .. 41
2.2.8 Server-to-Server Ingest .. 41

3 Protocol Details ... 43
3.1 Client Details ... 43

3.1.1 Abstract Data Model .. 43
3.1.1.1 Presentation Description .. 43

3.1.1.1.1 Protection System Metadata Description ... 44

5 / 65

[MS-SSTR] - v20241119
Smooth Streaming Protocol
Copyright © 2024 Microsoft Corporation
Release: November 19, 2024

3.1.1.1.2 Stream Description .. 44
3.1.1.1.2.1 Track Description ... 45

3.1.1.1.2.1.1 Custom Attribute Description ... 45
3.1.1.1.3 Fragment Reference Description .. 45

3.1.1.1.3.1 Track-Specific Fragment Reference Description 46
3.1.1.2 Fragment Description .. 46

3.1.1.2.1 Sample Description .. 46
3.1.2 Timers .. 47
3.1.3 Initialization ... 47
3.1.4 Higher-Layer Triggered Events ... 47

3.1.4.1 Open Presentation ... 47
3.1.4.2 Get Fragment ... 47
3.1.4.3 Close Presentation .. 48

3.1.5 Processing Events and Sequencing Rules ... 48
3.1.5.1 Manifest Request and Manifest Response ... 49
3.1.5.2 Fragment Request and Fragment Response .. 51

3.1.6 Timer Events .. 52
3.1.7 Other Local Events .. 52

3.2 Server Details .. 52
3.2.1 Abstract Data Model .. 52
3.2.2 Timers .. 53
3.2.3 Initialization ... 53
3.2.4 Higher-Layer Triggered Events ... 53
3.2.5 Processing Events and Sequencing Rules ... 53
3.2.6 Timer Events .. 54
3.2.7 Other Local Events .. 54

3.3 Live Encoder Details ... 54
3.3.1 Abstract Data Model .. 54
3.3.2 Timers .. 55
3.3.3 Initialization ... 55
3.3.4 Higher-Layer Triggered Events ... 55

3.3.4.1 Start Stream .. 55
3.3.4.2 Stop Stream ... 56

3.3.5 Processing Events and Sequencing Rules ... 56
3.3.6 Timer Events .. 56
3.3.7 Other Local Events .. 56

4 Protocol Examples ... 57
4.1 Manifest Response ... 57
4.2 Fragment Request .. 57
4.3 Live Ingest Request .. 58
4.4 Stream Manifest... 58
4.5 Live Server Manifest ... 58
4.6 Server Ingest Request .. 59

5 Security ... 60
5.1 Security Considerations for Implementers ... 60
5.2 Index of Security Parameters .. 60

6 Appendix A: Product Behavior ... 61

7 Change Tracking .. 62

8 Index ... 63

6 / 65

[MS-SSTR] - v20241119
Smooth Streaming Protocol
Copyright © 2024 Microsoft Corporation
Release: November 19, 2024

1 Introduction

The Smooth Streaming Protocol describes the wire format that is used to deliver (via HTTP) live and
on-demand digital media, such as audio and video, in the following manners: from an encoder to a
web server, from a server to another server, and from a server to an HTTP client. The use of an
MPEG-4 ([MPEG4-RA])-based data structure delivery over HTTP allows seamless switching in near-
real-time between different quality levels of compressed media content. The result is a constant

playback experience for the HTTP client end user, even if network and video rendering conditions
change for the client computer or device.

Sections 1.5, 1.8, 1.9, 2, and 3 of this specification are normative. All other sections and examples in
this specification are informative.

1.1 Glossary

This document uses the following terms:

bit rate: A measure of the average bandwidth that is required to deliver a track, in bits per
second (bps).

composition time: The time that a sample needs to be presented to the client, as defined in
[ISO/IEC-14496-12].

decoding: The reversal of the encoding process, used by a client or server to correctly interpret a
received object.

document type definition (DTD): A language that can be used to define the rules of an XML
document, as specified in [XML] section 2.8.

DVR window: The length of time that content is available as DVR content.

encoding: A process that specifies a Content-Transfer-Encoding for transforming character data
from one form to another.

fragment: An independently downloadable unit of media that comprises one or more samples.

HTTP cache proxy: A proxy that can deliver a stored copy of a response to clients.

live: Content that is streamed while it is still being encoded by an encoder.

manifest: Metadata about the presentation that allows a client to make requests for media.

media: Compressed audio, video, and text data that is used by the client to play a presentation.

media format: A well-defined format for representing audio or video as a compressed sample.

on-demand: A presentation that is available in its entirety when playback begins.

packet: A unit of audio media that defines natural boundaries for optimizing audio decoding.

parent track: A track with which one or more sparse tracks is associated, and that is used to
transmit timing information for the sparse track. Parent stream fragments always contain the
time stamp for the last sparse fragment.

presentation: A set of audio and video data streams and related metadata that are synchronized
for playback on a client.

request: An HTTP message sent from the client to the server, as defined in [RFC2616].

response: An HTTP message sent from the server to the client, as defined in [RFC2616].

https://go.microsoft.com/fwlink/?LinkId=327787
https://go.microsoft.com/fwlink/?LinkId=183695
https://go.microsoft.com/fwlink/?LinkId=90598
https://go.microsoft.com/fwlink/?LinkId=90372

7 / 65

[MS-SSTR] - v20241119
Smooth Streaming Protocol
Copyright © 2024 Microsoft Corporation
Release: November 19, 2024

sample: The smallest fundamental unit (such as a frame) in which media is stored and processed.

sparse stream: A stream that contains one or more sparse tracks.

sparse track: A track that is characterized by fragments that occur at irregular time intervals. It
can be used to send metadata to clients to support scenarios such as ad signaling. This

contrasts with non-sparse streams (for example, audio, video) in which fragments are sent at
regular time intervals. A sparse track is always associated with a non-sparse parent track that
is used to transmit timing information for the sparse track. Each sparse fragment includes a
reference to any sparse track fragments that are created immediately before it.

stream: A set of tracks interchangeable at the client when playing media.

track: A time-ordered collection of samples of a particular type (such as audio or video).

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as defined

in [RFC2119]. All statements of optional behavior use either MAY, SHOULD, or SHOULD NOT.

1.2 References

Links to a document in the Microsoft Open Specifications library point to the correct section in the

most recently published version of the referenced document. However, because individual documents
in the library are not updated at the same time, the section numbers in the documents may not
match. You can confirm the correct section numbering by checking the Errata.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If you
have any issue with finding a normative reference, please contact dochelp@microsoft.com. We will
assist you in finding the relevant information.

[IETFDRAFT-HLS] Pantos, R., Ed., and May, W., "HTTP Live Streaming", draft-pantos-http-live-
streaming-06, March 2011, http://tools.ietf.org/html/draft-pantos-http-live-streaming-06

[ISO/IEC-14496-12] International Organization for Standardization, "Information technology -- Coding
of audio-visual objects -- Part 12: ISO base media file format", ISO/IEC 14496-12:2008,
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=51533

[ISO/IEC-14496-3] International Organization for Standardization, "Information technology -- Coding

of audio-visual objects -- Part 3: Audio", ISO/IEC 14496-3:2009,
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=53943

[MPEG4-RA] The MP4 Registration Authority, "MP4REG", http://www.mp4ra.org

[MS-DTYP] Microsoft Corporation, "Windows Data Types".

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, https://www.rfc-editor.org/info/rfc2119

[RFC2396] Berners-Lee, T., Fielding, R., and Masinter, L., "Uniform Resource Identifiers (URI):
Generic Syntax", RFC 2396, August 1998, https://www.rfc-editor.org/info/rfc2396

[RFC2616] Fielding, R., Gettys, J., Mogul, J., et al., "Hypertext Transfer Protocol -- HTTP/1.1", RFC
2616, June 1999, https://www.rfc-editor.org/info/rfc2616

[SMIL2.1] Bulterman, D., Grassel, G., Jansen, J., Koivisto, A., Layaida, N., et al., Eds., "Synchronized
Multimedia Integration Language (SMIL 2.1)", W3C Recommendation, December, 2005,
http://www.w3.org/TR/SMIL2/

https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?linkid=850906
mailto:dochelp@microsoft.com
https://go.microsoft.com/fwlink/?LinkId=386439
https://go.microsoft.com/fwlink/?LinkId=183695
https://go.microsoft.com/fwlink/?LinkId=183694
https://go.microsoft.com/fwlink/?LinkId=327787
%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
https://go.microsoft.com/fwlink/?LinkId=90317
https://go.microsoft.com/fwlink/?LinkId=90339
https://go.microsoft.com/fwlink/?LinkId=90372
https://go.microsoft.com/fwlink/?LinkId=325594

8 / 65

[MS-SSTR] - v20241119
Smooth Streaming Protocol
Copyright © 2024 Microsoft Corporation
Release: November 19, 2024

[XML] World Wide Web Consortium, "Extensible Markup Language (XML) 1.0 (Fourth Edition)", W3C
Recommendation 16 August 2006, edited in place 29 September 2006,

http://www.w3.org/TR/2006/REC-xml-20060816/

1.2.2 Informative References

[ISO/IEC-14496-15] International Organization for Standardization, "Information technology -- Coding
of audio-visual objects -- Part 15: Advanced Video Coding (AVC) file format", ISO 14496-15,
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=38573

[MSDN-VIH] Microsoft Corporation, "VIDEOINFOHEADER structure", http://msdn.microsoft.com/en-
us/library/dd407325(VS.85).aspx

[MSDOCS-SSTR-HEVC] Microsoft Corporation, "Smooth Streaming Protocol (MS-SSTR) Amendment

for HEVC", https://learn.microsoft.com/en-us/azure/media-services/previous/media-services-
specifications-ms-sstr-amendment-hevc

[RFC2326] Schulzrinne, H., Rao, A., and Lanphier, R., "Real Time Streaming Protocol (RTSP)", RFC
2326, April 1998, https://www.rfc-editor.org/info/rfc2326

[RFC3548] Josefsson, S., Ed., "The Base16, Base32, and Base64 Data Encodings", RFC 3548, July
2003, https://www.rfc-editor.org/info/rfc3548

[RFC5234] Crocker, D., Ed., and Overell, P., "Augmented BNF for Syntax Specifications: ABNF", STD
68, RFC 5234, January 2008, https://www.rfc-editor.org/info/rfc5234

[VC-1] Society of Motion Picture and Television Engineers, "VC-1 Compressed Video Bitstream Format
and Decoding Process", SMPTE 421M-2006, April 2006, http://standards.smpte.org/content/978-1-
61482-555-5/st-421-2006/SEC1.body.pdf+html?sid=dc1cd243-8c31-45a2-87c6-1695c5bc63e5

Note There is a charge to download the specification.

[WFEX] Microsoft Corporation, "Multiple channel audio data and WAVE files", March 2007,

https://learn.microsoft.com/en-us/previous-versions/windows/hardware/design/dn653308(v=vs.85)

1.3 Overview

The Smooth Streaming Transport Protocol provides a means of delivering media from encoders to
servers (in the case of live streaming) and from servers to clients in a way that can be cached by
standard HTTP cache proxies in the communication chain. Allowing standard HTTP cache proxies to
respond to requests on behalf of the server increases the number of clients that can be served by a

single server.

The following figure depicts a typical communication pattern for the protocol.

https://go.microsoft.com/fwlink/?LinkId=90598
https://go.microsoft.com/fwlink/?LinkId=184538
https://go.microsoft.com/fwlink/?LinkId=184568
https://go.microsoft.com/fwlink/?LinkId=184568
https://go.microsoft.com/fwlink/?linkid=2132403
https://go.microsoft.com/fwlink/?linkid=2132403
https://go.microsoft.com/fwlink/?LinkId=90335
https://go.microsoft.com/fwlink/?LinkId=90432
https://go.microsoft.com/fwlink/?LinkId=123096
https://go.microsoft.com/fwlink/?LinkId=184566
https://go.microsoft.com/fwlink/?LinkId=184566
https://go.microsoft.com/fwlink/?LinkId=184570

9 / 65

[MS-SSTR] - v20241119
Smooth Streaming Protocol
Copyright © 2024 Microsoft Corporation
Release: November 19, 2024

Figure 1: Typical communication sequence for the Smooth Streaming Transport Protocol

The first message in the communication pattern is a Manifest Request, to which the server replies with
a Manifest Response. The client then makes one or more Fragment Requests, and the server replies to

each with a Fragment Response. Correlation between requests and responses is handled by the
underlying Hypertext Transport Protocol (HTTP) [RFC2616] layer.

The server role in the protocol is stateless, allowing each request from the client to be potentially
handled by a different instance of the server, or by one or more HTTP cache proxies. The following
figure depicts the communication pattern for requests for the same fragment, indicated as "Fragment

Request X", when an HTTP cache proxy is used.

https://go.microsoft.com/fwlink/?LinkId=90372

10 / 65

[MS-SSTR] - v20241119
Smooth Streaming Protocol
Copyright © 2024 Microsoft Corporation
Release: November 19, 2024

Figure 2: Typical communication pattern of requests for the same fragment

1.4 Relationship to Other Protocols

The Smooth Streaming Transport Protocol uses HTTP [RFC2616] as its underlying transport.

The Smooth Streaming Transport Protocol fulfills a similar function to established stateful media
protocols, such as Real Time Streaming Protocol (RTSP) [RFC2326]. However, it provides significantly
greater scalability in Internet scenarios due to effective use of HTTP cache proxies.

1.5 Prerequisites/Preconditions

This protocol assumes HTTP [RFC2616] connectivity from the client to the server.

It is also assumed that the client is integrated with a higher-layer implementation that supports any

media formats that are used and can otherwise play the media that is transmitted by the
server.<1><2>

1.6 Applicability Statement

This protocol is most appropriate for delivering media over the Internet or in environments where
HTTP cache proxies can be used to maximize scalability. It can be used on any network where HTTP
[RFC2616] connectivity to the server is available.

https://go.microsoft.com/fwlink/?LinkId=90372
https://go.microsoft.com/fwlink/?LinkId=90335
https://go.microsoft.com/fwlink/?LinkId=90372
https://go.microsoft.com/fwlink/?LinkId=90372

11 / 65

[MS-SSTR] - v20241119
Smooth Streaming Protocol
Copyright © 2024 Microsoft Corporation
Release: November 19, 2024

1.7 Versioning and Capability Negotiation

This document covers versioning issues in the following areas:

 Protocol Versions: The Smooth Streaming Transport Protocol is explicitly versioned through the

MajorVersion and MinorVersion fields that are specified in section 2.2.2.1.

 Security and Authentication Methods: Security and authentication for the Smooth Streaming
Transport Protocol is performed at the underlying transport layer (HTTP) and does not restrict
which of the HTTP supported mechanisms can be used.

1.8 Vendor-Extensible Fields

The following fields in this protocol can be extended by vendors:

 Custom Attributes in the Manifest Response: This capability is provided by the
VendorExtensionAttributes field, as specified in section 2.2.2. Implementers can ensure that

extensions do not conflict by assigning extensions an XML namespace that is unique to their
implementation.

 Custom Data Elements in the Manifest Response: This capability is provided by the
VendorExtensionDataElement field, as specified in section 2.2.2.6.1. Implementers can ensure
that extensions do not conflict by assigning extensions an XML namespace that is unique to their
implementation.

 Custom Boxes in the Fragment Response: This capability is provided by the
VendorExtensionUUID field, as specified in section 2.2.4.

 Custom Media Formats for Audio: This capability is provided by the AudioTag and

CodecPrivateData fields, as specified in section 2.2.2.5. Implementers can ensure that
extensions do not conflict by assigning extensions a GUID (as specified in [MS-DTYP] section
2.3.4.1) that is embedded in the CodecPrivateData field, as specified in [WFEX].

 Custom Descriptive Codes for Media Formats: This capability is provided by the FourCC field,
as specified in section 2.2.2.5. Implementers can ensure that extensions do not conflict by
registering extension codes with the MPEG4-RA, as specified in [ISO/IEC-14496-12].

 Custom HTTP Headers in the Manifest Response: This capability is provided by the underlying

transport layer (HTTP), as specified in [RFC2616] section 6.

 Custom HTTP Headers in the Fragment Response: This capability is provided by the
underlying transport layer (HTTP), as specified in [RFC2616] section 6.

 Custom HTTP Headers in the Fragment Request: This capability is provided by the underlying
transport layer (HTTP), as specified in [RFC2616] section 5.

 Custom HTTP Headers in the Manifest Request: This capability is provided by the underlying

transport layer (HTTP), as specified in [RFC2616] section 5.

1.9 Standards Assignments

None.

%5bMS-DTYP%5d.pdf#Section_cca2742956894a16b2b49325d93e4ba2
https://go.microsoft.com/fwlink/?LinkId=184570
https://go.microsoft.com/fwlink/?LinkId=90372

12 / 65

[MS-SSTR] - v20241119
Smooth Streaming Protocol
Copyright © 2024 Microsoft Corporation
Release: November 19, 2024

2 Messages

2.1 Transport

The Manifest Request and Fragment Request messages MUST be represented as HTTP request

messages, as specified by the Request rule of [RFC2616], subject to the following constraints:

 The method MUST be "GET".

 For the Manifest Request message, the RequestURI MUST adhere to the syntax of the
ManifestRequest field, specified in section 2.2.1.

 For the Fragment Request message, the RequestURI MUST adhere to the syntax of the
FragmentRequest field, specified in section 2.2.3.

 The HTTP-Version SHOULD be HTTP/1.1.

The Manifest Response and Fragment Response messages MUST be represented as HTTP response
messages, as specified by the Response rule of [RFC2616], subject to the following constraints:

 The Status-Code SHOULD be 200.

 For the Manifest Response message, the message body MUST adhere to the syntax of the
ManifestResponse field, specified in section 2.2.2.

 For the Fragment Response message, the message body MUST adhere to the syntax to the

FragmentResponse field, specified in section 2.2.4.

 The HTTP-Version SHOULD be HTTP/1.1.

The Live Ingest Request MUST be represented as an HTTP request message, as specified by the
Request rule of [RFC2616], subject to the following constraints:

 The Method MUST be "POST".

 The "Transfer-Encoding: Chunked" header SHOULD replace the "Content-Length" header.

 The RequestURI MUST adhere to the syntax of the LiveIngestRequest field, specified in section

2.2.7.

 The HTTP-Version SHOULD be HTTP/1.1.

2.2 Message Syntax

The Smooth Streaming Transport Protocol defines five types of messages:

 Manifest Request (section 2.2.1)

 Manifest Response (section 2.2.2)

 Fragment Request (section 2.2.3)

 Fragment Response (section 2.2.4)

 Live Ingest Request (section 2.2.7)

The following fields are commonly used across the message set. The syntax of each field is specified in

Augmented Backus–Naur Form (ABNF) [RFC5234].

TRUE: A case-insensitive string value for true, for use in XML attributes.

https://go.microsoft.com/fwlink/?LinkId=90372
https://go.microsoft.com/fwlink/?LinkId=123096

13 / 65

[MS-SSTR] - v20241119
Smooth Streaming Protocol
Copyright © 2024 Microsoft Corporation
Release: November 19, 2024

 TRUE = "true"

FALSE: A case-insensitive string value for false, for use in XML attributes.

 FALSE = "false"

STRING-UINT64: An unsigned decimal integer that is less than 2^64, written as a string.

 STRING-UINT64 = 1*DIGIT

STRING-UINT32: An unsigned decimal integer that is less than 2^32, written as a string.

 STRING-UINT32 = 1*DIGIT

STRING-UINT16: An unsigned decimal integer that is less than 2^16, written as a string.

 STRING-UINT16 = 1*DIGIT

STRING-UINT8: An unsigned decimal integer that is less than 2^8, written as a string.

 STRING-UINT8 = 1*DIGIT

S: Whitespace legal inside an XML document, as defined in [XML].

 S = 1*(%x20 / %x09 / %x0D / %x0A)

Eq: An equality expression that is used for attributes, as defined in [XML].

 Eq = S "=" S

SQ: A single-quote character that contains attributes, as defined in [XML].

 SQ = %x27

DQ: A double-quote character that contains attributes, as defined in [XML].

 DQ = %x22

URL-SAFE-CHAR: A character that can safely appear in a Uniform Resource Identifier (URI), as
specified in [RFC2396].

https://go.microsoft.com/fwlink/?LinkId=90598
https://go.microsoft.com/fwlink/?LinkId=90339

14 / 65

[MS-SSTR] - v20241119
Smooth Streaming Protocol
Copyright © 2024 Microsoft Corporation
Release: November 19, 2024

 URL-SAFE-CHAR = <URL-safe character as defined in [RFC2616]>

URL-ENCODED-CHAR: A character that is encoded to safely appear in a URI, as specified in
[RFC2396].

 URL-ENCODED-CHAR = "%" HEXDIG HEXDIG

HEXCODED-BYTE: A hexadecimal coding of a byte, with the first character for the four high bits and

the second character for the four low bits.

 HEXCODED-BYTE = HEXDIG HEXDIG

XML-CHARDATA: XML data without elements, as specified by the "CharData" field in [XML].

 XML-CHARDATA = <XML character data as defined by CharData in [XML]>

IDENTIFIER: An identifier that is safe for use in data fields.

 IDENTIFIER = *URL-SAFE-CHAR

IDENTIFIER-NONNUMERIC: A nonnumeric identifier that is safe for use in data fields.

 IDENTIFIER = ALPHA / UNDERSCORE *URL-SAFE-CHAR
 UNDERSCORE = "_"

URISAFE-IDENTIFIER: An identifier that is safe for use in data fields that are part of a URI
[RFC2396].

 IDENTIFIER = *(URL-SAFE-CHAR / URL-ENCODED-CHAR)

URISAFE-IDENTIFIER-NONNUMERIC: A nonnumeric identifier that is safe for use in data fields
that are part of a URI [RFC2396].

 IDENTIFIER = ALPHA / UNDERSCORE *(URL-SAFE-CHAR / URL-ENCODED-CHAR)
 UNDERSCORE = "_"

2.2.1 Manifest Request

The ManifestRequest field and related fields contain data that is required to request a manifest
from the server.

ManifestRequest (variable): The URI [RFC2396] of the manifest resource.

https://go.microsoft.com/fwlink/?LinkId=90339

15 / 65

[MS-SSTR] - v20241119
Smooth Streaming Protocol
Copyright © 2024 Microsoft Corporation
Release: November 19, 2024

FileExtension (variable): The extension of the manifest file. It MUST be set to "isml" for live
streaming.

HLSExtension (variable): An optional field to specify HTTP Live Streaming ([IETFDRAFT-HLS]
section 6.2.2). It MUST be used for playback on iOS devices.

The syntax of the fields that are defined in this section, specified in ABNF [RFC5234], is as follows.

 VirtualPath = URISAFE-IDENTIFIER
 PublishingPointName = URISAFE-IDENTIFIER
 PresentationURI = ["/" VirtualPath] "/" PublishingPointName "." FileExtension
 ManifestRequest = PresentationURI "/" "Manifest"
 HLSExtension = "(format=m3u8-aapl)"

 VendorExtensionFileExtension = ALPHA *(ALPHA / DIGIT)
 FileExtension = "ism" / "isml" [HLSExtension / VendorExtensionFileExtension]

2.2.2 Manifest Response

The ManifestResponse field and related fields contain metadata that is required by the client to
construct subsequent FragmentRequest messages and play back the received data.

ManifestResponse (variable): Metadata that is required by the client to play back the

presentation. This field MUST be a well-formed XML document [XML] that is subject to the
following constraints:

 The document's root element is a SmoothStreamingMedia field.

 The document's XML declaration's major version is 1.

 The document's XML declaration's minor version is 0.

 The document does not use a document type definition (DTD).

 The document uses encoding that is supported by the client implementation.

 The XML elements that are specified in this document do not use XML namespaces.

Prolog (variable): The Prolog field, as specified in [XML].

Misc (variable): The Misc field, as specified in [XML].

SmoothStreamingMedia (variable): The SmoothStreamingMedia field, as specified in section
2.2.2.1.

HTTPLiveStreamingMedia (variable): The HTTPLiveStreamingMedia field, as specified in

[IETFDRAFT-HLS] section 6.2.2.

The syntax of the fields that are defined in this section, specified in ABNF [RFC5234], is as follows.

 ManifestResponse = prolog [SmoothStreamingMedia / HTTPLiveStreamingMedia] Misc

https://go.microsoft.com/fwlink/?LinkId=386439
https://go.microsoft.com/fwlink/?LinkId=123096
https://go.microsoft.com/fwlink/?LinkId=90598
https://go.microsoft.com/fwlink/?LinkId=386439
https://go.microsoft.com/fwlink/?LinkId=123096

16 / 65

[MS-SSTR] - v20241119
Smooth Streaming Protocol
Copyright © 2024 Microsoft Corporation
Release: November 19, 2024

2.2.2.1 SmoothStreamingMedia

The SmoothStreamingMedia field and related fields encapsulate metadata that is required to play
the presentation.

SmoothStreamingMedia (variable): An XML element that encapsulates all metadata that is
required by the client to play back the presentation.

SmoothStreamingMediaAttributes (variable): The collection of XML attributes for the
SmoothStreamingMedia element. Attributes can appear in any order. However, the following
fields are required and MUST be present in SmoothStreamingMediaAttributes:
MajorVersionAttribute, MinorVersionAttribute, and DurationAttribute.

MajorVersion (variable): The major version of the Manifest Response message. MUST be set to 2.

MinorVersion (variable): The minor version of the Manifest Response message. MUST be set to 0 or
2.

TimeScale (variable): The timescale of the Duration attribute, specified as the number of
increments in 1 second. The default value is 10000000.

Duration (variable): The duration of the presentation, specified as the number of time increments
indicated by the value of the TimeScale field.

IsLive (variable): Specifies the presentation type. If this field contains a TRUE value, it specifies that
the presentation is a live presentation. Otherwise, the presentation is an on-demand
presentation.

LookaheadCount (variable): Specifies the size of the server buffer, as an integer number of
fragments. This field MUST be omitted for on-demand presentations.

DVRWindowLength (variable): The length of the DVR window, specified as the number of time
increments indicated by the value of the TimeScale field. If this field is omitted for a live

presentation or set to 0, the DVR window is effectively infinite. This field MUST be omitted for on-

demand presentations.

The syntax of the fields that are defined in this section, specified in ABNF [RFC5234], is as follows.

 SmoothStreamingMedia = "<" SmoothStreamingMediaElementName S
 SmoothStreamingMediaAttributes S ">"
 S SmoothStreamingMediaContent *1S
 "</" SmoothStreamingMediaElementName ">"
 SmoothStreamingMediaElementName = "SmoothStreamingMedia"
 SmoothStreamingMediaAttributes = *(
 MajorVersionAttribute
 / MinorVersionAttribute
 / TimeScaleAttribute
 / DurationAttribute
 / IsLiveAttribute
 / LookaheadCountAttribute
 / DVRWindowLengthAttribute
 / VendorExtensionAttribute
)
 MajorVersionAttribute = S MajorVersionAttributeName S Eq S
 (DQ MajorVersion DQ) / (SQ MajorVersion SQ) *1S
 MajorVersionAttributeName = "MajorVersion"
 MajorVersion = "2"
 MinorVersionAttribute = S MinorVersionAttributeName S Eq S
 (DQ MinorVersion DQ) / (SQ MinorVersion SQ) *1S
 MinorVersionAttributeName = "MinorVersion"
 MinorVersion = "0" / "2"
 TimeScaleAttribute = S TimeScaleAttributeName S Eq S
 (DQ TimeScale DQ) / (SQ TimeScale SQ) *1S

https://go.microsoft.com/fwlink/?LinkId=123096

17 / 65

[MS-SSTR] - v20241119
Smooth Streaming Protocol
Copyright © 2024 Microsoft Corporation
Release: November 19, 2024

 TimeScaleAttributeName = "TimeScale"
 TimeScale = STRING-UINT64
 DurationAttribute = S DurationAttributeName S Eq S
 (DQ Duration DQ) / (SQ Duration SQ) *1S
 DurationAttributeName = "Duration"
 Duration = STRING-UINT64
 IsLiveAttribute = S IsLiveAttributeName S Eq S
 (DQ IsLive DQ) / (SQ IsLive SQ) *1S
 IsLiveAttributeName = "IsLive"
 IsLive = TRUE / FALSE
 LookaheadCountAttribute = S LookaheadCountAttributeName S Eq S
 (DQ LookaheadCount DQ) / (SQ LookaheadCount SQ) *1S
 LookaheadCountAttributeName = "LookaheadCount"
 LookaheadCount = STRING-UINT32
 DVRWindowLengthAttribute = S DVRWindowLengthAttributeName S Eq S
 (DQ DVRWindowLength DQ) / (SQ DVRWindowLength SQ) *1S
 DVRWindowLengthAttributeName = "DVRWindowLength"
 DVRWindowLength= STRING-UINT64
 SmoothStreamingMediaContent = [ProtectionElement *1S] 1*StreamElement

2.2.2.2 ProtectionElement

The ProtectionElement field and related fields encapsulate metadata that is required to play back
protected content.

ProtectionElement (variable): An XML element that encapsulates metadata that is required by the
client to play back protected content.

ProtectionHeaderElement (variable): An XML element that encapsulates content-protection
metadata for a specific content-protection system.

SystemID (variable): A UUID that uniquely identifies the Content Protection System to which this

ProtectionElement field pertains.

ProtectionHeaderContent (variable): Opaque data that the Content Protection System that is

identified in the SystemID field can use to enable playback for authorized users, encoded using
base64 encoding [RFC3548].

The syntax of the fields that are defined in this section, specified in ABNF [RFC5234], is as follows.

 ProtectionElement = "<" ProtectionElementName S ">"
 S 1*(ProtectionHeaderElement *1S)
 "</" ProtectionElementName ">"
 ProtectionElementName = "Protection"
 ProtectionHeaderElement = "<" ProtectionHeaderElementName S
 ProtectionHeaderAttributes S ">"
 S ProtectionHeaderContent *1S
 "</" ProtectionHeaderElementName ">"
 ProtectionHeaderAttributes = SystemIDAttribute
 SystemIDAttribute = S SystemIDAttributeName S Eq S
 (DQ SystemID DQ) / (SQ SystemID SQ) *1S
 SystemIDAttributeName = "SystemID"
 SystemID = "{"
 4*4 HEXCODED-BYTE "-"
 2*2 HEXCODED-BYTE "-"
 2*2 HEXCODED-BYTE "-"
 2*2 HEXCODED-BYTE "-"
 6*6 HEXCODED-BYTE "-"
 "}"
 ProtectionHeaderContent = STRING-BASE64

https://go.microsoft.com/fwlink/?LinkId=90432
https://go.microsoft.com/fwlink/?LinkId=123096

18 / 65

[MS-SSTR] - v20241119
Smooth Streaming Protocol
Copyright © 2024 Microsoft Corporation
Release: November 19, 2024

2.2.2.3 StreamElement

The StreamElement field and related fields encapsulate metadata that is required to play a specific
stream in the presentation.

StreamElement (variable): An XML element that encapsulates all metadata that is required by the
client to play back a stream.

StreamAttributes (variable): The collection of XML attributes for the SmoothStreamingMedia
element. Attributes can appear in any order. However, the following field is required and MUST be
present in StreamAttributes: TypeAttribute. The following additional fields are required and
MUST be present in StreamAttributes unless an Embedded Track is used in the StreamContent
field: NumberOfFragmentsAttribute, NumberOfTracksAttribute, and UrlAttribute.

StreamContent (variable): Metadata describing available tracks and fragments.

Type (variable): The type of the stream: video, audio, or text. If the specified type is text, the
following field is required and MUST appear in StreamAttributes: SubtypeAttribute. Unless the

specified type is video, the following fields MUST NOT appear in StreamAttributes:
StreamMaxWidthAttribute, StreamMaxHeightAttribute, DisplayWidthAttribute, and
DisplayHeightAttribute.

StreamTimeScale (variable): The timescale for duration and time values in this stream, specified as
the number of increments in 1 second.

Name (variable): The name of the stream.

NumberOfFragments (variable): The number of fragments that are available for this stream.

NumberOfTracks (variable): The number of tracks that are available for this stream.

Subtype (variable): A four-character code that identifies the intended use category for each sample
in a text track. However, the FourCC field, specified in section 2.2.2.5, is used to identify the

media format for each sample. The following range of values is reserved, with the following

semantic meanings:

 "SCMD": Triggers for actions by the higher-layer implementation on the client.

 "CHAP": Chapter markers.

 "SUBT": Subtitles that are used for foreign-language audio.

 "CAPT": Closed captions for people who are deaf.

 "DESC": Media descriptions for people who are deaf.

 "CTRL": Events that control the application business logic.

 "DATA": Application data that does not fall into any of the previous categories.

Url (variable): A pattern that is used by the client to generate Fragment Request messages.

SubtypeControlEvents (variable): Control events for applications on the client.

StreamMaxWidth (variable): The maximum width of a video sample, in pixels.

StreamMaxHeight (variable): The maximum height of a video sample, in pixels.

DisplayWidth (variable): The suggested display width of a video sample, in pixels.

DisplayHeight (variable): The suggested display height of a video sample, in pixels.

19 / 65

[MS-SSTR] - v20241119
Smooth Streaming Protocol
Copyright © 2024 Microsoft Corporation
Release: November 19, 2024

ParentStream (variable): Specifies the non-sparse stream that is used to transmit timing
information for this stream. If the ParentStream field is present, it indicates that the stream that

is described by the containing StreamElement field is a sparse stream. If present, the value of
this field MUST match the value of the Name field for a non-sparse stream in the presentation.

ManifestOutput (variable): Specifies whether sample data for this stream appears directly in the
manifest as part of the ManifestOutputSample field, specified in section 2.2.2.6.1, if this field
contains a TRUE value. Otherwise, the ManifestOutputSample field for fragments that are part
of this stream MUST be omitted.

The syntax of the fields that are defined in this section, specified in ABNF [RFC5234], is as follows.

 StreamElement = "<" StreamElementName S
 StreamAttributes S ">"
 S StreamContent *1S
 "</" StreamElementName ">"
 Name = "StreamIndex"
 StreamAttributes = *(
 TypeAttribute
 / SubtypeAttribute
 / StreamTimeScaleAttribute
 / NameAttribute
 / NumberOfFragmentsAttribute
 / NumberOfTracksAttribute
 / UrlAttribute
 / StreamMaxWidthAttribute
 / StreamMaxHeightAttribute
 / DisplayWidthAttribute
 / DisplayHeightAttribute
 / ParentStreamAttribute
 / ManifestOutputAttribute
 / VendorExtensionAttribute
)
 TypeAttribute = S TypeAttributeName S Eq S
 (DQ Type DQ) / (SQ Type SQ) *1S
 TypeAttributeName = "Type"
 Type = "video" / "audio" / "text"
 SubtypeAttribute = S SubtypeAttributeName S Eq S
 (DQ Subtype DQ) / (SQ Subtype SQ) *1S
 SubtypeAttributeName = "Subtype"
 Subtype = 4*4 ALPHA
 StreamTimeScaleAttribute = S StreamTimeScaleAttributeName S Eq S
 (DQ StreamTimeScale DQ) / (SQ StreamTimeScale SQ) *1S
 StreamTimeScaleAttributeName = "TimeScale"
 StreamTimeScale = STRING-UINT64
 NameAttribute = S NameAttributeName S Eq S
 (DQ Name DQ) / (SQ Name SQ) *1S
 NameAttributeName = "Name"
 Name = ALPHA *(ALPHA / DIGIT / UNDERSCORE / DASH)
 NumberOfFragmentsAttribute = S NumberOfFragmentsAttributeName S Eq S
 (DQ NumberOfFragments DQ) / (SQ NumberOfFragments SQ)
 *1S
 NumberOfFragmentsAttributeName = "Chunks"
 NumberOfFragments = STRING-UINT32
 NumberOfTracksAttribute = S NumberOfTracksAttributeName S Eq S
 (DQ NumberOfTracks DQ) / (SQ NumberOfTracks SQ) *1S
 NumberOfTracksAttributeName = "QualityLevels"
 NumberOfTracks = STRING-UINT32
 UrlAttribute = S UrlAttributeName S Eq S
 (DQ Url DQ) / (SQ Url SQ) *1S
 UrlAttributeName = "Url"
 Url = UrlPattern
 StreamMaxWidthAttribute = S StreamMaxWidthAttributeName S Eq S
 (DQ StreamMaxWidth DQ) / (SQ StreamMaxWidth SQ) *1S
 StreamMaxWidthAttributeName = "MaxWidth"
 StreamMaxWidth = STRING-UINT32

https://go.microsoft.com/fwlink/?LinkId=123096

20 / 65

[MS-SSTR] - v20241119
Smooth Streaming Protocol
Copyright © 2024 Microsoft Corporation
Release: November 19, 2024

 StreamMaxHeightAttribute = S StreamMaxHeightAttributeName S Eq S
 (DQ StreamMaxHeight DQ) / (SQ StreamMaxHeight SQ) *1S
 StreamMaxHeightAttributeName = "MaxHeight"
 StreamMaxHeight = STRING-UINT32
 DisplayWidthAttribute = S DisplayWidthAttributeName S Eq S
 (DQ DisplayWidth DQ) / (SQ DisplayWidth SQ) *1S
 DisplayWidthAttributeName = "DisplayWidth"
 DisplayWidth = STRING-UINT32
 DisplayHeightAttribute = S DisplayHeightAttributeName S Eq S
 (DQ DisplayHeight DQ) / (SQ DisplayHeight SQ) *1S
 DisplayHeightAttributeName = "DisplayHeight"
 DisplayHeight = STRING-UINT32
 ParentStreamAttribute = S ParentStreamAttributeName S Eq S
 (DQ ParentStream DQ) / (SQ ParentStream SQ) *1S
 ParentStreamAttributeName = "ParentStreamIndex"
 ParentStream = ALPHA *(ALPHA / DIGIT / UNDERSCORE / DASH)
 ManifestOutputAttribute = S ManifestOutputAttributeName S Eq S
 (DQ ManifestOutput DQ) / (SQ ManifestOutput SQ) *1S
 ManifestOutputAttributeName = "ManifestOutput"
 ManifestOutput = TRUE / FALSE
 StreamContent = 1*(TrackElement *1S) *(StreamFragment *1S)

2.2.2.4 UrlPattern

The UrlPattern field and related fields define a pattern that can be used by the client to make
semantically valid Fragment Requests for the presentation.

UrlPattern (variable): This field Encapsulates a pattern for constructing Fragment Requests.

BitrateSubstitution (variable): A placeholder expression for the bit rate of a track.

CustomAttributesSubstitution (variable): A placeholder expression for the attributes that are
used to disambiguate a track from other tracks in the stream.

TrackName (variable): A unique identifier that applies to all tracks in a stream.

StartTimeSubstitution (variable): A placeholder expression for the time of a fragment.

The syntax of the fields that are defined in this section, specified in ABNF [RFC5234], is as follows.

 UrlPattern = QualityLevelsPattern "/" FragmentsPattern
 QualityLevelsPattern = QualityLevelsNoun "(" QualityLevelsPredicatePattern ")"
 QualityLevelsNoun = "QualityLevels"
 QualityLevelsPredicate = BitrateSubstitution ["," CustomAttributesSubstitution]
 Bitrate = "{bitrate}" / "{Bitrate}"
 CustomAttributesSubstitution = "{CustomAttributes}"
 FragmentsPattern = FragmentsNoun "(" FragmentsPatternPredicate ")";
 FragmentsNoun = "Fragments"
 FragmentsPatternPredicate = TrackName "=" StartTimeSubstitution;
 TrackName = URISAFE-IDENTIFIER-NONNUMERIC
 StartTimeSubstitution = "{start time}" / "{start_time}"

2.2.2.5 TrackElement

The TrackElement field and related fields encapsulate metadata that is required to play a specific
track in the stream.

TrackElement (variable): An XML element that encapsulates all metadata that is required by the
client to play a track.

https://go.microsoft.com/fwlink/?LinkId=123096

21 / 65

[MS-SSTR] - v20241119
Smooth Streaming Protocol
Copyright © 2024 Microsoft Corporation
Release: November 19, 2024

TrackAttributes (variable): The collection of XML attributes for TrackElement. Attributes can
appear in any order. However, the following fields are required and MUST be present in

TrackAttributes: IndexAttribute and BitrateAttribute. If the track is contained in a stream
whose Type is video, the following additional fields are also required and MUST be present in

TrackAttributes: MaxWidthAttribute, MaxHeightAttribute, and
CodecPrivateDataAttribute. If the track is contained in a stream whose Type is audio, the
following additional fields are also required and MUST be present in TrackAttributes:
MaxWidthAttribute, MaxHeightAttribute, CodecPrivateDataAttribute,
SamplingRateAttribute, ChannelsAttribute, BitsPerSampleAttribute, PacketSizeAttribute,
AudioTagAttribute, and FourCCAttribute.

Index (variable): An ordinal that identifies the track and MUST be unique for each track in the

stream. Index SHOULD start at 0 and increment by 1 for each subsequent track in the stream.

Bitrate (variable): The average bandwidth that is consumed by the track, in bits per second (bps).
The value 0 MAY be used for tracks whose bit rate is negligible relative to other tracks in the
presentation.

MaxWidth (variable): The maximum width of a video sample, in pixels.

MaxHeight (variable): The maximum height of a video sample, in pixels.

SamplingRate (variable): The Sampling Rate of an audio track, as defined in [ISO/IEC-14496-12].

Channels (variable): The Channel Count of an audio track, as defined in [ISO/IEC-14496-12].

AudioTag (variable): A numeric code that identifies which media format and variant of the media
format is used for each sample in an audio track. The following range of values is reserved with
the following semantic meanings:

 "1": The sample media format is Linear 8 or 16-bit pulse code modulation.

 "353": Microsoft Windows Media Audio v7, v8 and v9.x Standard (WMA Standard)

 "353": Microsoft Windows Media Audio v9.x and v10 Professional (WMA Professional).

 "85": International Organization for Standardization (ISO) MPEG-1 Layer III (MP3).

 "255": ISO Advanced Audio Coding (AAC).

 "65534": Vendor-extensible format. If specified, the CodecPrivateData field SHOULD contain
a hexadecimal-encoded version of the WAVE_FORMAT_EXTENSIBLE structure [WFEX].

BitsPerSample (variable): The sample size of an audio track, as defined in [ISO/IEC-14496-12].

PacketSize (variable): The size of each audio packet, in bytes.

FourCC (variable): A four-character code that identifies which media format is used for each sample.
The following range of values is reserved with the following semantic meanings:

 "H264": Video samples for this track use Advanced Video Coding, as described in [ISO/IEC-

14496-15].

 "WVC1": Video samples for this track use VC-1, as described in [VC-1].

 "AACL": Audio samples for this track use AAC (Low Complexity), as specified in [ISO/IEC-

14496-3].

 "WMAP": Audio samples for this track use WMA Professional.

https://go.microsoft.com/fwlink/?LinkId=183695
https://go.microsoft.com/fwlink/?LinkId=184570
https://go.microsoft.com/fwlink/?LinkId=184538
https://go.microsoft.com/fwlink/?LinkId=184538
https://go.microsoft.com/fwlink/?LinkId=184566
https://go.microsoft.com/fwlink/?LinkId=183694
https://go.microsoft.com/fwlink/?LinkId=183694

22 / 65

[MS-SSTR] - v20241119
Smooth Streaming Protocol
Copyright © 2024 Microsoft Corporation
Release: November 19, 2024

 A vendor extension value containing a registered with MPEG4-RA, as specified in [ISO/IEC-
14496-12].

CodecPrivateData (variable): Data that specifies parameters that are specific to the media format
and common to all samples in the track, represented as a string of hexadecimal-coded bytes. The

format and semantic meaning of byte sequence varies with the value of the FourCC field as
follows:

 The FourCC field equals "H264": The CodecPrivateData field contains a hexadecimal-coded
string representation of the following byte sequence, specified in ABNF [RFC5234]:

 %x00 %x00 %x00 %x01 SPSField %x00 %x00 %x00 %x01 PPSField

 SPSField contains the Sequence Parameter Set (SPS).

 PPSField contains the Picture Parameter Set (PPS).

 The FourCC field equals "WVC1": The CodecPrivateData field contains a hexadecimal-coded
string representation of the VIDEOINFOHEADER structure, specified in [MSDN-VIH].

 The FourCC field equals "AACL": The CodecPrivateData field SHOULD be empty.

 The FourCC field equals "WMAP": The CodecPrivateData field contains the WAVEFORMATEX

structure, specified in [WFEX], if the AudioTag field equals "65534". Otherwise, it SHOULD be
empty.

 The FourCC field is a vendor extension value: The format of the CodecPrivateData field is
also vendor-extensible. Registration of the FourCC field value with MPEG4-RA, as specified in
[ISO/IEC-14496-12], can be used to avoid collision between extensions.

NALUnitLengthField (variable): The number of bytes that specifies the length of each Network

Abstraction Layer (NAL) unit. This field SHOULD be omitted unless the value of the FourCC field is
"H264". The default value is 4.

The syntax of the fields that are defined in this section, specified in ABNF [RFC5234], is as follows.

 Track = TrackWithoutContent / TrackWithContent
 TrackWithoutContent = "<" TrackElementName S TrackAttributes S "/>"
 TrackWithContent = "<" TrackElementName S TrackAttributes S ">"
 S TrackContent S "</" TrackElementName ">"
 TrackElementName = "QualityLevel"
 TrackAttributes = *(
 IndexAttribute
 / BitrateAttribute
 / CodecPrivateDataAttribute
 / MaxWidthAttribute
 / MaxHeightAttribute
 / SamplingRateAttribute
 / ChannelsAttribute
 / BitsPerSampleAttribute
 / PacketSizeAttribute
 / AudioTagAttribute
 / FourCCAttribute
 / NALUnitLengthFieldAttribute
 / VendorExtensionAttribute
)
 IndexAttribute = S IndexAttributeName S Eq S
 (DQ Index DQ) / (SQ Index SQ) S
 IndexAttributeName = "Index"
 Index = STRING-UINT32
 BitrateAttribute = S BitrateAttributeName S Eq S

https://go.microsoft.com/fwlink/?LinkId=123096
https://go.microsoft.com/fwlink/?LinkId=184568

23 / 65

[MS-SSTR] - v20241119
Smooth Streaming Protocol
Copyright © 2024 Microsoft Corporation
Release: November 19, 2024

 (DQ Bitrate DQ) / (SQ Bitrate SQ) S
 BitrateAttributeName = "Bitrate"
 Index = STRING-UINT32
 MaxWidthAttribute = S MaxWidthAttributeName S Eq S
 (DQ MaxWidth DQ) / (SQ MaxWidth SQ) S
 MaxWidthAttributeName = "MaxWidth"
 MaxWidth = STRING-UINT32
 MaxHeightAttribute = S MaxHeightAttributeName S Eq S
 (DQ MaxHeight DQ) / (SQ MaxHeight SQ) S
 MaxHeightAttributeName = "MaxHeight"
 MaxHeight = STRING-UINT32
 CodecPrivateDataAttribute = S CodecPrivateDataAttributeName S Eq S
 (DQ CodecPrivateData DQ) / (SQ CodecPrivateData SQ) S
 CodecPrivateDatatAttributeName = "CodecPrivateData"
 CodecPrivateData = *HEXCODED-BYTE
 SamplingRateAttribute = S SamplingRateAttributeName S Eq S
 (DQ SamplingRate DQ) / (SQ SamplingRate SQ) S
 SamplingRateAttributeName = "SamplingRate"
 SamplingRate = STRING-UINT32
 ChannelsAttribute = S ChannelsAttributeName S Eq S
 (DQ Channels DQ) / (SQ Channels SQ) S
 ChannelsAttributeName = "Channels"
 Channels = STRING-UINT16
 BitsPerSampleAttribute = S BitsPerSampleAttributeName S Eq S
 (DQ BitsPerSample DQ) / (SQ BitsPerSample SQ) S
 BitsPerSampleAttributeName = "BitsPerSample"
 BitsPerSample = STRING-UINT16
 PacketSizeAttribute = S PacketSizeAttributeName S Eq S
 (DQ PacketSize DQ) / (SQ PacketSize SQ) S
 PacketSizeAttributeName = "PacketSize"
 PacketSize = STRING-UINT32
 AudioTagAttribute = S AudioTagAttributeName S Eq S
 (DQ AudioTag DQ) / (SQ AudioTag SQ) S
 PacketSizeAttributeName = "AudioTag"
 AudioTag = STRING-UINT32
 FourCCAttribute = S FourCCAttributeName S Eq S
 (DQ FourCC DQ) / (SQ FourCC SQ) S
 FourCCAttributeName = "AudioTag"
 FourCC = 4*4 ALPHA
 NALUnitLengthFieldAttribute = S NALUnitLengthFieldAttributeName S Eq S
 (DQ NALUnitLengthField DQ)
 / (SQ NALUnitLengthField SQ) S
 NALUnitLengthFieldAttributeName = "NALUnitLengthField"
 NALUnitLengthField = STRING-UINT16
 TrackContent = *1CustomAttributes

2.2.2.5.1 CustomAttributesElement

The CustomAttributesElement field and related fields are used to specify metadata that
disambiguates tracks in a stream.

CustomAttributes (variable): Metadata that is expressed as key/value pairs that disambiguate
tracks.

CustomAttributeName (variable): The name of a custom attribute for a track.

CustomAttributeValue (variable): The value of a custom attribute for a track.

The syntax of the fields that are defined in this section, specified in ABNF [RFC5234], is as follows.

 CustomAttributesElement = S "<" CustomAttributesElementName S ">"
 S 1*(AttributeElement *1S)
 "</" CustomAttributesElementName ">"
 AttributeElement = "<" AttributeElementName S AttributeAttributes S "/>"

https://go.microsoft.com/fwlink/?LinkId=123096

24 / 65

[MS-SSTR] - v20241119
Smooth Streaming Protocol
Copyright © 2024 Microsoft Corporation
Release: November 19, 2024

 AttributeAttributes = (AttributeNameAttribute S AttributeValueAttribute)
 / (AttributeValueAttribute S AttributeNameAttribute)
 AttributeNameAttribute = S AttributeNameAttributeName S Eq S
 (DQ CustomAttributeName DQ) / (SQ CustomAttributeName SQ) *1S
 AttributeNameAttributeName = "Name"
 CustomAttributeName = IDENTIFIER
 AttributeValueAttribute = S AttributeValueAttributeName S Eq S
 (DQ CustomAttributeValue DQ) / (SQ CustomAttributeValue SQ) *1S
 AttributeValueAttributeName = "Value"
 CustomAttributeValue = IDENTIFIER

2.2.2.6 StreamFragmentElement

The StreamFragmentElement field and related fields are used to specify metadata for one set of
related fragments in a stream. The order of repeated StreamFragmentElement fields in a
containing StreamElement field is significant for the correct function of the Smooth Streaming
Transport Protocol. To this end, the following elements make use of the terms "preceding" and

"subsequent" StreamFragmentElement in reference to the order of these fields.

StreamFragmentElement (variable): An XML element that encapsulates metadata for a set of
related fragments. Attributes can appear in any order. However, either one or both of the
following fields are required and MUST be present in StreamFragmentAttributes:
FragmentDuration and FragmentTime. Additionally, a contiguous sequence of fragments MUST
be represented using one of the following schemes. A sequence of fragments is termed contiguous
if, with the exception of the first fragment, the StreamFragmentElement's FragmentTime field
of any fragment in the sequence is equal to the sum of the StreamFragmentElement's

FragmentTime field and the FragmentDuration field of the preceding fragment.

 Start-time coding – Each fragment in the sequence has an explicit value for the
StreamFragmentElement's FragmentTime field and an implicit value for the
StreamFragmentElement's FragmentDuration field, except the last fragment, for which the
value of the StreamFragmentElement's FragmentDuration field is explicit.

 Duration coding – Each fragment in the sequence has an explicit value for the

StreamFragmentElement's FragmentDuration field and an implicit value for the
StreamFragmentElement's FragmentTime field, except the first fragment, whose start-time is
explicit unless the implicit value of zero is desired.

FragmentNumber (variable): The ordinal of the StreamFragmentElement field in the stream. If
FragmentNumber is specified, its value MUST monotonically increase with the value of the
FragmentTime field.

FragmentDuration (variable): The duration of the fragment, specified as a number of increments

defined by the implicit or explicit value of the containing StreamElement's StreamTimeScale
field. If the FragmentDuration field is omitted, its implicit value MUST be computed by the client
by subtracting the value of the preceding StreamFragmentElement's FragmentTime field from
the value of this StreamFragmentElement's FragmentTime field. If no preceding
StreamFragmentElement exists, the implicit value of the FragmentDuration field MUST be
computed by the client by subtracting the value of this StreamFragmentElement

FragmentTime field from the subsequent StreamFragmentElement's FragmentTime field.

If no preceding or subsequent StreamFragmentElement field exists, the implicit value of the
FragmentDuration field is the value of the SmoothStreamingMedia's Duration field.

FragmentTime (variable): The time of the fragment, specified as a number of increments defined
by the implicit or explicit value of the containing StreamElement's StreamTimeScale field. If
the FragmentTime field is omitted, its implicit value MUST be computed by the client by adding
the value of the preceding StreamFragmentElement's FragmentTime field to the value of the

25 / 65

[MS-SSTR] - v20241119
Smooth Streaming Protocol
Copyright © 2024 Microsoft Corporation
Release: November 19, 2024

preceding StreamFragmentElement's FragmentDuration field. If no preceding
StreamFragmentElement exists, the implicit value of the FragmentTime field is 0.

FragmentRepeat (variable): The repeat count of the fragment, specified as the number of
contiguous fragments with the same duration defined by the StreamFragmentElement's

FragmentTime field. This value is one-based. (A value of 2 means two fragments in the
contiguous series). The SmoothStreamingMedia's MajorVersion and MinorVersion fields
MUST both be set to 2.

The syntax of the fields that are defined in this section, specified in ABNF [RFC5234], is as follows.

 StreamFragmentElement = "<" StreamFragmentElementName S
 StreamFragmentAttributes S ">"
 S StreamFragmentContent *1S
 "</" StreamFragmentElementName ">"
 StreamFragmentElementName = "c"
 StreamFragmentAttributes = *(
 FragmentNumberAttribute
 / FragmentDurationAttribute
 / FragmentTimeAttribute
)
 FragmentNumberAttribute = S FragmentNumberAttributeName S Eq S
 (DQ FragmentNumber DQ) / (SQ FragmentNumber SQ) *1S
 FragmentNumberAttributeName = "n"
 FragmentNumber = STRING-UINT32
 FragmentDurationAttribute = S FragmentDurationAttributeName S Eq S
 (DQ FragmentDuration DQ) / (SQ FragmentDuration SQ) *1S
 FragmentDurationAttributeName = "d"
 FragmentDuration = STRING-UINT64
 FragmentTimeAttribute = S FragmentTimeAttributeName S Eq S
 (DQ FragmentTime DQ) / (SQ FragmentTime SQ) *1S
 FragmentTimeAttributeName = "t"
 FragmentTime = STRING-UINT64
 FragmentRepeatAttribute = S FragmentRepeatAttributeName S Eq *1S
 (DQ FragmentRepeat DQ) / (SQ FragmentRepeat SQ) *1S
 FragmentRepeatAttributeName = "r"
 FragmentRepeat = STRING-UINT64
 StreamFragmentContent = *(TrackFragment S)
 TrackFragment = "<" TrackFragmentElementName S
 TrackFragmentAttributes S ">"
 S 1*(TrackFragmentContent *1S)
 "</" TrackFragmentElementName ">"
 TrackFragmentAttributes = *(
 TrackFragmentIndexAttribute
 / VendorExtensionAttribute
)
 TrackFragmentIndexAttribute = S TrackFragmentIndexAttributeName S Eq S
 (DQ TrackFragmentIndex DQ)
 / (SQ TrackFragmentIndex SQ) *1S
 TrackFragmentIndexAttributeName = "i"
 TrackFragmentIndex = STRING-UINT32
 TrackFragmentContent = VendorExtensionTrackData
 VendorExtensionTrackData = XML-CHARDATA

2.2.2.6.1 TrackFragmentElement

The TrackFragmentElement field and related fields are used to specify metadata pertaining to a
fragment for a specific track, rather than all versions of a fragment for a stream.

TrackFragmentElement (variable): An XML element that encapsulates informative track-specific
metadata for a specific fragment. Attributes can appear in any order. However, the following field
is required and MUST be present in TrackFragmentAttributes:

TrackFragmentIndexAttribute.

https://go.microsoft.com/fwlink/?LinkId=123096

26 / 65

[MS-SSTR] - v20241119
Smooth Streaming Protocol
Copyright © 2024 Microsoft Corporation
Release: November 19, 2024

TrackFragmentIndex (variable): An ordinal that MUST match the value of the Index field for the
track to which this TrackFragment field pertains.

ManifestOutputSample (variable): A string that contains the base64-encoded representation of the
raw bytes of the sample data for this fragment. This field MUST be omitted unless the

ManifestOutput field for the corresponding stream contains a TRUE value.

The syntax of the fields that are defined in this section, specified in ABNF [RFC5234], is as follows.

 TrackFragmentElement = "<" TrackFragmentElementName S
 TrackFragmentAttributes S ">"
 S TrackFragmentContent S
 "</" TrackFragmentElementName ">"
 TrackFragmentElementName = "f"
 TrackFragmentAttributes = *(
 TrackFragmentIndexAttribute
 / VendorExtensionAttribute
)
 TrackFragmentIndexAttribute = S TrackFragmentIndexAttributeName S Eq S
 (DQ TrackFragmentIndex DQ)
 / (SQ TrackFragmentIndex SQ) *1S
 TrackFragmentIndexAttributeName = "i"
 TrackFragmentIndex = STRING-UINT32
 TrackFragmentContent = ManifestOutputSample
 ManifestOutputSample = BASE64-STRING

2.2.3 Fragment Request

The FragmentRequest field and related fields contain data that is required to request a fragment

from the server.

FragmentRequest (variable): The URI [RFC2616] of the fragment resource.

BitratePredicate (variable): The bit rate of the requested fragment.

CustomAttributesPredicate (variable): An attribute of the requested fragment that is used to
disambiguate tracks.

CustomAttributesKey (variable): The name of the attribute that is specified in the
CustomAttributesPredicate field.

CustomAttributesValue (variable): The value of the attribute that is specified in the
CustomAttributesPredicate field.

FragmentsNoun (variable): The type of response that is expected by the client.

StreamName (variable): The name of the stream that contains the requested fragment.

Time (variable): The time of the requested fragment.

HLSPredicate (variable): An optional variable to request a fragment that is delivered with the HTTP
Live Streaming protocol as specified in [IETFDRAFT-HLS] section 6.2.2.

The syntax of the fields that are defined in this section, specified in ABNF [RFC5234], is as follows.

 FragmentRequest = PresentationURI "/" QualityLevelsSegment "/" FragmentsSegment
 ; PresentationURI is specified in section 2.2.1
 QualityLevelsSegment = QualityLevelsNoun "(" QualityLevelsPredicate ")"
 QualityLevelsNoun = "QualityLevels"
 QualityLevelsPredicate = BitratePredicate *("," CustomAttributesPredicate)

https://go.microsoft.com/fwlink/?LinkId=123096
https://go.microsoft.com/fwlink/?LinkId=90372
https://go.microsoft.com/fwlink/?LinkId=386439
https://go.microsoft.com/fwlink/?LinkId=123096

27 / 65

[MS-SSTR] - v20241119
Smooth Streaming Protocol
Copyright © 2024 Microsoft Corporation
Release: November 19, 2024

 BitratePredicate = STRING-UINT32
 CustomAttributesPredicate = CustomAttributesKey "=" CustomAttributesValue
 CustomAttributesKey = URISAFE-IDENTIFIER-NONNUMERIC
 CustomAttributesValue = URISAFE-IDENTIFIER
 FragmentsSegment = FragmentsNoun "(" FragmentsPredicate ")"
 FragmentsNoun = FragmentsNounFullResponse
 / FragmentsNounMetadataOnly
 / FragmentsNounDataOnly
 / FragmentsNounIndependentOnly
 FragmentsNounFullResponse = "Fragments"
 FragmentsNounMetadataOnly = "FragmentInfo"
 FragmentsNounDataOnly = "RawFragments"
 FragmentsNounIndependentOnly = "KeyFrames"
 FragmentsPredicate = StreamName "=" Time [HLSPredicate]
 StreamName = URISAFE-IDENTIFIER-NONNUMERIC
 Time = STRING-UINT64
 HLSPredicate = ", " "format=m3u8-aapl"

2.2.4 Fragment Response

The FragmentResponse field and/or related fields encapsulate media and metadata that are specific

to the requested fragment.

FragmentResponse (variable): The media and/or related metadata for a fragment.

FragmentFullResponse (variable): A Fragment Response that contains data and metadata.

FragmentMetadataResponse (variable): A Fragment Response that contains only metadata.

FragmentDataResponse (variable): A Fragment Response that contains only data.

FragmentMetadata (variable): Metadata for the fragment.

FragmentData (variable): Media data for the fragment.

The syntax of the fields that are defined in this section, specified in ABNF [RFC5234], is as follows.

 FragmentResponse = FragmentFullResponse
 / FragmentMetadataResponse
 / FragmentDataResponse
 FragmentFullResponse = FragmentMetadata FragmentData
 FragmentMetadataResponse = FragmentMetadata
 FragmentDataResponse = SampleData
 FragmentMetadata = MoofBox
 FragmentData = MdatBox

The SampleData field, in the preceding ABNF syntax, is specified in section 2.2.4.8.

2.2.4.1 MoofBox

The MoofBox field and related fields encapsulate metadata that is specific to the requested fragment.
The syntax of MoofBox is a strict subset of the syntax of the Movie Fragment Box that is specified in
[ISO/IEC-14496-12].

MoofBox (variable): The top-level metadata container for the requested fragment. The following
fields are required and MUST be present in MoofBoxChildren: MfhdBox and TrafBox.

MoofBoxLength (4 bytes): The length of the MoofBox field, in bytes, including the

MoofBoxLength field. If the value of the MoofBoxLength field is %00.00.00.01, the
MoofBoxLongLength field MUST be present.

https://go.microsoft.com/fwlink/?LinkId=123096
https://go.microsoft.com/fwlink/?LinkId=183695

28 / 65

[MS-SSTR] - v20241119
Smooth Streaming Protocol
Copyright © 2024 Microsoft Corporation
Release: November 19, 2024

MoofBoxLongLength (8 bytes): The length of the MoofBox field, in bytes, including the
MoofBoxLongLength field.

The syntax of the fields that are defined in this section, specified in ABNF [RFC5234], is as follows.

 MoofBox = MoofBoxLength MoofBoxType [MoofBoxLongLength]
 MoofBoxChildren
 MoofBoxType = %d109 %d111 %d111 %d102
 MoofBoxLength = BoxLength
 MoofBoxLongLength = BoxLongLength
 MoofBoxChildren = 2*(MfhdBox / TrafBox / VendorExtensionUUIDBox)

2.2.4.2 MfhdBox

The MfhdBox field and related fields specify the fragment's position in the sequence for the track. The
syntax of the MfhdBox field is a strict subset of the syntax of the Movie Fragment Header Box that is

defined in [ISO/IEC-14496-12].

MfhdBox (variable): The metadata container for the sequence information for the track.

MfhdBoxLength (4 bytes): The length of the MfhdBox field, in bytes, including the
MfhdBoxLength field. If the value of the MfhdBoxLength field is %00.00.00.01, the

MfhdBoxLongLength field MUST be present.

MfhdBoxLongLength (8 bytes): The length of the MfhdBox field, in bytes, including the
MfhdBoxLongLength field.

SequenceNumber (4 bytes): An ordinal for the fragment in the track timeline. The
SequenceNumber value for a fragment that appears later in the timeline MUST be greater than
the value for a fragment that appears earlier in the timeline, but SequenceNumber values for

consecutive fragments are not required to be consecutive.

The syntax of the fields that are defined in this section, specified in ABNF [RFC5234], is as follows.

 MfhdBox = MfhdBoxLength MfhdBoxType [MfhdBoxLongLength] MfhdBoxFields
 MfhdBoxChildren
 MfhdBoxType = %d109 %d102 %d104 %d100
 MfhdBoxLength = BoxLength
 MfhdBoxLongLength = LongBoxLength
 MfhdBoxFields = SequenceNumber
 SequenceNumber = UNSIGNED-INT32
 MfhdBoxChildren = *(VendorExtensionUUIDBox)

2.2.4.3 TrafBox

The TrafBox field and related fields encapsulate metadata that is specific to the requested fragment

and track. The syntax of the TrafBox field is a strict subset of the syntax of the Track Fragment Box
that is defined in [ISO/IEC-14496-12].

TrafBox (variable): The top-level metadata container for track-specific metadata for the fragment.
The following fields are required and MUST be present in TrafBoxChildren: TfhdBox and
TrunBox.

TrafBoxLength (4 bytes): The length of the TrafBox field, in bytes, including the TrafBoxLength
field. If the value of the TrafBoxLength field is %00.00.00.01, the TrafBoxLongLength field
MUST be present.

https://go.microsoft.com/fwlink/?LinkId=123096
https://go.microsoft.com/fwlink/?LinkId=183695
https://go.microsoft.com/fwlink/?LinkId=123096
https://go.microsoft.com/fwlink/?LinkId=183695

29 / 65

[MS-SSTR] - v20241119
Smooth Streaming Protocol
Copyright © 2024 Microsoft Corporation
Release: November 19, 2024

TrafBoxLongLength (8 bytes): The length of the TrafBox field, in bytes, including the
TrafBoxLongLength field.

The syntax of the fields that are defined in this section, specified in ABNF [RFC5234], is as follows.

 TrafBox = TrafBoxLength TrafBoxType [TrafBoxLongLength]
 TrafBoxChildren
 TrafBoxType = %d116 %d114 %d97 %d102
 TrafBoxLength = BoxLength
 TrafBoxLongLength = LongBoxLength
 TrafBoxChildren = 2*(TfhdBox / TrunBox
 / VendorExtensionUUIDBox)

2.2.4.4 TfxdBox

The TfxdBox field and related fields encapsulate the absolute timestamp and duration of a fragment

in a live presentation. This field SHOULD be ignored if it appears in an on-demand presentation.

TfxdBox (variable): The metadata container for per-sample defaults.

TfxdBoxLength (4 bytes): The length of the TfxdBox field, in bytes, including the TfxdBoxLength
field. If the value of the TfxdBoxLength field is %00.00.00.01, the TfxdBoxLongLength field
MUST be present.

TfxdBoxLongLength (8 bytes): The length of the TfxdBox field, in bytes, including the
TfxdBoxLongLength field.

TfxdBoxVersion (1 byte): The box version. If this field contains the value %x01, the

TfxdBoxDataFields64 field MUST be present inside the TfxdBoxFields field. Otherwise, the
TfxdBoxDataFields32 field MUST be present inside the TfxdBoxFields field.

FragmentAbsoluteTime32 (4 bytes): The absolute timestamp of the first sample of the fragment,

in timescale increments for the track.

FragmentDuration32 (4 bytes): The total duration of all samples in the fragment, in timescale
increments for the track.

FragmentAbsoluteTime64 (8 bytes): The absolute timestamp of the first sample of the fragment,

in timescale increments for the track.

FragmentDuration64 (8 bytes): The total duration of all samples in the fragment, in timescale
increments for the track.

The syntax of the fields that are defined in this section, specified in ABNF [RFC5234], is as follows.

 TfxdBox = TfxdBoxLength TfxdBoxType [TfxdBoxLongLength] TfxdBoxUUID TfxdBoxFields
 TfxdBoxChildren
 TfxdBoxType = %d117 %d117 %d105 %d100
 TfxdBoxLength = BoxLength
 TfxdBoxLongLength = LongBoxLength
 TfxdBoxUUID = %x6D %x1D %x9B %x05 %x42 %xD5 %x44 %xE6
 %x80 %xE2 %x14 %x1D %xAF %xF7 %x57 %xB2
 TfxdBoxFields = TfxdBoxVersion
 TfxdBoxFlags
 TfxdBoxDataFields32 / TfxdBoxDataFields64
 TfxdBoxVersion = %x00-01
 TfxdBoxFlags = 24*24RESERVED-BIT
 TfxdBoxDataFields32 = FragmentAbsoluteTime32
 FragmentDuration32
 TfxdBoxDataFields64 = FragmentAbsoluteTime64

https://go.microsoft.com/fwlink/?LinkId=123096
https://go.microsoft.com/fwlink/?LinkId=123096

30 / 65

[MS-SSTR] - v20241119
Smooth Streaming Protocol
Copyright © 2024 Microsoft Corporation
Release: November 19, 2024

 FragmentDuration64
 FragmentAbsoluteTime32 = UNSIGNED-INT32
 FragmentDuration32 = UNSIGNED-INT32
 FragmentAbsoluteTime64 = UNSIGNED-INT64
 FragmentDuration64 = UNSIGNED-INT64
 TfxdBoxChildren = *(VendorExtensionUUIDBox)

2.2.4.5 TfrfBox

The TfrfBox field and related fields encapsulate the absolute timestamp and duration for one or more
subsequent fragments of the same track in a live presentation. This field SHOULD be ignored if it
appears in an on-demand presentation. For a live presentation, this field MUST be present unless one
of the following conditions is true:

 The containing track for this fragment is a sparse track.

 The number of subsequent fragments in the track is less than the value of the LookaheadCount

field, specified in section 2.2.2.1, for the presentation.

 The LookaheadCount field is set to 0.

TfrfBox (variable): The metadata container for per-sample defaults.

TfrfBoxLength (4 bytes): The length of the TfrfBox field, in bytes, including the TfrfBoxLength
field. If the value of the TfrfBoxLength field is %x00.00.00.01, the TfrfBoxLongLength field
MUST be present.

TfrfBoxLongLength (8 bytes): The length of the TfrfBox field, in bytes, including the
TfrfBoxLongLength field.

TfrfBoxVersion (1 byte): The box version. If this field contains the value %x01, the
TfrfBoxDataFields64 field MUST be present inside the TfrfBoxFields field. Otherwise, the
TfrfBoxDataFields32 field MUST be present inside the TfrfBoxFields field.

FragmentCount (4 byte): The number of fragments for which the TfrfBox field contains
information.

TfrfBoxDataFields32 (variable): The absolute timestamps and durations for a set of subsequent
fragments, represented as 32-bit values. If the value of the TfrfBoxVersion field is %x00, the
number of instances of this field MUST be exactly the value of FragmentCount.

TfrfBoxDataFields64 (variable): The absolute timestamps and durations for a set of subsequent
fragments, represented as 64-bit values. If the value of the TfrfBoxVersion field is %x00, the
number of instances of this field MUST be exactly the value of FragmentCount.

FragmentAbsoluteTime32 (4 bytes): The absolute timestamp of the first sample of a subsequent

fragment, in timescale increments for the track.

FragmentDuration32 (4 bytes): The total duration of all samples in a subsequent fragment, in

timescale increments for the track.

FragmentAbsoluteTime64 (8 bytes): The absolute timestamp of the first sample of a subsequent
fragment, in timescale increments for the track.

FragmentDuration64 (8 bytes): The total duration of all samples in a subsequent fragment, in

timescale increments for the track.

The syntax of the fields that are defined in this section, specified in ABNF [RFC5234], is as follows.

https://go.microsoft.com/fwlink/?LinkId=123096

31 / 65

[MS-SSTR] - v20241119
Smooth Streaming Protocol
Copyright © 2024 Microsoft Corporation
Release: November 19, 2024

 TfrfBox = TfrfBoxLength TfrfBoxType [TfrfBoxLongLength] TfrfBoxUUID TfrfBoxFields
 TfrfBoxChildren
 TfrfBoxType = %d117 %d117 %d105 %d100
 TfrfBoxLength = BoxLength
 TfrfBoxLongLength = LongBoxLength
 TfrfBoxUUID = %xD4 %x80 %x7E %xF2 %xCA %x39 %x46 %x95
 %x8E %x54 %x26 %xCB %x9E %x46 %xA7 %x9F
 TfrfBoxFields = TfrfBoxVersion
 TfrfBoxFlags
 FragmentCount
 (1*TfrfBoxDataFields32) / (1*TfrfBoxDataFields64)
 TfrfBoxVersion = %x00-01
 TfrfBoxFlags = 24*24RESERVED-BIT
 FragmentCount = UINT8
 TfrfBoxDataFields32 = FragmentAbsoluteTime32
 FragmentDuration32
 TfrfBoxDataFields64 = FragmentAbsoluteTime64
 FragmentDuration64
 FragmentAbsoluteTime32 = UNSIGNED-INT32
 FragmentDuration32 = UNSIGNED-INT32
 FragmentAbsoluteTime64 = UNSIGNED-INT64
 FragmentDuration64 = UNSIGNED-INT64
 TfrfBoxChildren = *(VendorExtensionUUIDBox)

2.2.4.6 TfhdBox

The TfhdBox field and related fields encapsulate defaults for per-sample metadata in the fragment.
The syntax of the TfhdBox field is a strict subset of the syntax of the Track Fragment Header Box that
is defined in [ISO/IEC-14496-12].

TfhdBox (variable): The metadata container for per-sample defaults.

TfhdBoxLength (4 bytes): The length of the TfhdBox field, in bytes, including the TfhdBoxLength
field. If the value of the TfhdBoxLength field is %00.00.00.01, the TfhdBoxLongLength field

MUST be present.

TfhdBoxLongLength (8 bytes): The length of the TfhdBox field, in bytes, including the
TfhdBoxLongLength field.

BaseDataOffset (8 bytes): The offset, in bytes, from the beginning of the MdatBox field to the

sample field in the MdatBox field.

SampleDescriptionIndex (4 bytes): The ordinal of the sample description for the track that is
applicable to this fragment. This field SHOULD be omitted.

DefaultSampleDuration (4 bytes): The default duration of each sample, in increments that are
defined by the TimeScale field for the track.

DefaultSampleSize (4 bytes): The default size of each sample, in bytes.

DefaultSampleFlags (4 bytes): The default value of the SampleFlags field for each sample.

The syntax of the fields that are defined in this section, specified in ABNF [RFC5234], is as follows.

 TfhdBox = TfhdBoxLength TfhdBoxType [TfhdBoxLongLength] TfhdBoxFields
 TfhdBoxChildren
 TfhdBoxType = %d116 %d102 %d104 %d100
 TfhdBoxLength = BoxLength
 TfhdBoxLongLength = LongBoxLength
 TfhdBoxFields = TfhdBoxVersion
 TfhdBoxFlags

https://go.microsoft.com/fwlink/?LinkId=183695
https://go.microsoft.com/fwlink/?LinkId=123096

32 / 65

[MS-SSTR] - v20241119
Smooth Streaming Protocol
Copyright © 2024 Microsoft Corporation
Release: November 19, 2024

 [BaseDataOffset]
 [SampleDescriptionIndex]
 [DefaultSampleDuration]
 [DefaultSampleSize]
 [DefaultSampleFlags]
 TfhdBoxVersion = %x00
 TfhdBoxFlags = 18*18RESERVED-BIT
 DefaultSampleFlagsPresent
 DefaultSampleSizePresent
 DefaultSampleDurationPresent
 RESERVED-BIT
 SampleDescriptionIndexPresent
 BaseDataOffsetPresent
 BaseDataOffset = UNSIGNED-INT64
 SampleDescriptionIndex = UNSIGNED-INT32
 DefaultSampleDuration = UNSIGNED-INT32
 DefaultSampleSize = UNSIGNED-INT32
 DefaultSampleFlags = SampleFlags
 TfhdBoxChildren = *(VendorExtensionUUIDBox)

2.2.4.7 TrunBox

The TrunBox field and related fields encapsulate per-sample metadata for the requested fragment.
The syntax of TrunBox is a strict subset of the syntax of the Track Fragment Run Box that is defined
in [ISO/IEC-14496-12].

TrunBox (variable): The container for per-sample metadata.

TrunBoxLength (4 bytes): The length of the TrunBox field, in bytes, including the TrunBoxLength
field. If the value of the TrunBoxLength field is %00.00.00.01, the TrunBoxLongLength field
MUST be present.

TrunBoxLongLength (8 bytes): The length of the TrunBox field, in bytes, including the
TrunBoxLongLength field.

SampleCount (4 bytes): The number of samples in the fragment.

DataOffset (4 bytes): This field MUST be set. It specifies the offset from the beginning of the
MoofBox field (section 2.2.4.1). If only one TrunBox is specified, then the DataOffset field
MUST be the sum of the lengths of the MoofBox and all the fields in the MdatBox field (section
2.2.4.8).

FirstSampleFlagsPresent (1 bit): Indicates that the default flags for the first sample are replaced if
this field takes the value %b1.

SampleSizePresent (1 bit): Indicates that each sample has its own size if this field takes the value
%b1. If this field is not present, the default value that is specified by the DefaultSampleSize
field is used.

SampleDurationPresent (1 bit): Indicates that each sample has its own duration if this field takes

the value %b1. If this field is not present, the default value that is specified by the

DefaultSampleDuration field is used.

SampleFlagsPresent (1 bit): Indicates that each sample has its own flags if this field takes the
value %b1. If this field is not present, the default value that is specified by the
DefaultSampleFlags field is used.

SampleCompositionTimeOffsetPresent (1 bit): Indicates that each sample has a composition
time offset if this field takes the value %b1.

https://go.microsoft.com/fwlink/?LinkId=183695

33 / 65

[MS-SSTR] - v20241119
Smooth Streaming Protocol
Copyright © 2024 Microsoft Corporation
Release: November 19, 2024

FirstSampleFlags (4 bytes): The value of the SampleFlags field for the first sample. This field
MUST be present if and only if the FirstSampleFlagsPresent field takes the value %b1.

SampleSize (4 bytes): The size of each sample, in bytes. This field MUST be present if and only if
the SampleSizePresent field takes the value %b1. If this field is not present, its implicit value is

the value of the DefaultSampleSize field.

SampleDuration (4 bytes): The duration of each sample, in increments that are defined by the
TimeScale for the track. This field MUST be present if and only if the SampleDurationPresent
field takes the value %b1. If this field is not present, its implicit value is the value of the
DefaultSampleDuration field.

TrunBoxSampleFlags (4 bytes): The sample flags of each sample. This field MUST be present if and
only if the SampleFlagsPresent field takes the value %b1. If this field is not present, its implicit

value is the value of the DefaultSampleFlags field. If the FirstSampleFlags field is present and
this field is omitted, this field's implicit value for the first sample in the fragment MUST be the
value of the FirstSampleFlags field.

DataOffsetPresent (1 bit): Specifies whether the DataOffset field is present. This field MUST be
set.

SampleCompositionTimeOffset (4 bytes): The Sample Composition Time offset of each sample, as

defined in [ISO/IEC-14496-12]. This field MUST be present if and only if the
SampleCompositionTimeOffsetPresent field takes the value %b1.

The syntax of the fields that are defined in this section, specified in ABNF [RFC5234], is as follows.

 TrunBox = TrunBoxLength TrunBoxType [TrunBoxLongLength] TrunBoxFields
 TrunBoxChildren
 TrunBoxType = %d116 %d114 %d117 %d110
 TrunBoxLength = BoxLength
 TrunBoxLongLength = LongBoxLength
 TrunBoxFields = TrunBoxVersion
 TrunBoxFlags
 SampleCount
 DataOffset
 [FirstSampleFlags]
 *(TrunBoxPerSampleFields)
 ; TrunBoxPerSampleFields MUST be repeated exactly SampleCount times
 TrunBoxFlags = 12*12RESERVED-BIT
 SampleCompositionTimeOffsetPresent
 SampleFlagsPresent
 SampleSizePresent
 SampleDurationPresent
 RESERVED-BIT
 RESERVED-BIT
 RESERVED-BIT
 RESERVED-BIT
 RESERVED-BIT
 FirstSampleFlagsPresent
 RESERVED-BIT
 RESERVED-BIT
 DataOffsetPresent
 SampleCompositionTimeOffsetPresent = BIT
 SampleFlagsPresent = BIT
 SampleSizePresent = BIT
 SampleDurationPresent = BIT
 FirstSampleFlagsPresent = BIT
 FirstSampleFlags = SampleFlags
 TrunBoxPerSampleFields = [SampleDuration]
 [SampleSize]
 [TrunBoxSampleFlags]
 [SampleCompositionTimeOffset]
 SampleDuration = UNSIGNED-INT32

https://go.microsoft.com/fwlink/?LinkId=123096

34 / 65

[MS-SSTR] - v20241119
Smooth Streaming Protocol
Copyright © 2024 Microsoft Corporation
Release: November 19, 2024

 SampleSize = UNSIGNED-INT32
 TrunBoxSampleFlags = SampleFlags
 SampleCompositionTimeOffset = UNSIGNED-INT32
 TrunBoxChildren = *(VendorExtensionUUIDBox)

2.2.4.8 MdatBox

The MdatBox field and related fields encapsulate media data for the requested fragment. The syntax
of the MdatBox field is a strict subset of the syntax of the Media Data Container Box that is defined in
[ISO/IEC-14496-12].

MdatBox (variable): The media data container.

MdatBoxLength (4 bytes): The length of the MdatBox field, in bytes, including the
MdatBoxLength field. If the value of the MdatBoxLength field is %00.00.00.01, the

MdatBoxLongLength field MUST be present.

MdatBoxLongLength (8 bytes): The length of the MdatBox field, in bytes, including the
MdatBoxLongLength field.

SampleData (variable): A single sample of media. Sample boundaries in the MdatBox field are
defined by the values of the DefaultSampleSize and SampleSize fields in the TrunBox field.

The syntax of the fields that are defined in this section, specified in ABNF [RFC5234], is as follows.

 MdatBox = MdatBoxLength MdatBoxType [MdatBoxLongLength]
 MdatBoxFields
 MoofBoxType = %d109 %d100 %d97 %d116
 MoofBoxLength = BoxLength
 MoofBoxLongLength = LongBoxLength
 MdatBoxFields = *(SampleData)
 SampleData = *BYTE

2.2.4.9 Fragment Response Common Fields

This section defines the common fields that are used in the Fragment Response message for the
following fields: MoofBox, MfhdBox, TrafBox, TfxdBox, TfxfBox, TfhdBox, and TrunBox.

SampleFlags (4 bytes): A comprehensive sample flags field.

SampleDependsOn (2 bits): Specifies whether this sample depends on another sample.

SampleDependsOnUnknown (2 bits): Unknown whether this sample depends on other samples.

SampleDependsOnOthers (2 bits): This sample depends on other samples.

SampleDoesNotDependOnOthers (2 bits): This sample does not depend on other samples.

SampleIsDependedOn (2 bits): Specifies whether other samples depend on this sample.

SampleIsDependedOnUnknown (2 bits): Unknown whether other samples depend on this sample.

SampleIsNotDisposable (2 bits): Other samples depend on this sample.

SampleIsDisposable (2 bits): No other samples depend on this sample.

SampleHasRedundancy (2 bits): Specifies whether this sample uses redundant coding.

https://go.microsoft.com/fwlink/?LinkId=183695
https://go.microsoft.com/fwlink/?LinkId=123096

35 / 65

[MS-SSTR] - v20241119
Smooth Streaming Protocol
Copyright © 2024 Microsoft Corporation
Release: November 19, 2024

RedundantCodingUnknown (2 bits): Unknown whether this sample uses redundant coding.

RedundantCoding (2 bits): This sample uses redundant coding.

NoRedundantCoding (2 bits): This sample does not use redundant coding.

SampleIsDifferenceValue (1 bit): A value of %b1 specifies that the sample is not a random access

point in the stream.

SamplePaddingValue (3 bits): The sample padding value, as specified in [ISO/IEC-14496-12].

SampleDegradationPriority (2 bytes): The sample degradation priority, as specified in [ISO/IEC-
14496-12].

VendorExtensionUUIDBox (Variable): A user extension box, as specified in [ISO/IEC-14496-12].

The syntax of the fields that are defined in this section, specified in ABNF [RFC5234], is as follows.

 SampleFlags = 6*6RESERVED-BIT
 SampleDependsOn
 SampleIsDependedOn
 SampleHasRedundancy
 SamplePaddingValue
 SampleIsDifferenceValue
 SampleDegradationPriority
 SampleDependsOn = SampleDependsOnUnknown
 / SampleDependsOnOthers
 / SampleDoesNotDependsOnOthers
 SampleDependsOnUnknown = %b0 %b0
 SampleDependsOnOthers = %b0 %b1
 SampleDoesNotDependOnOthers = %b1 %b0
 SampleIsDependedOn = SampleIsDependedOnUnknown
 / SampleIsNotDisposable
 / SampleIsDisposable
 SampleIsDependedOnUnknown = %b0 %b0
 SampleIsNotDisposable = %b0 %b1
 SampleIsDisposable = %b1 %b0
 SampleHasRedundancy = RedundantCodingUnknown
 / RedundantCoding
 / NoRedundantCoding
 RedundantCodingUnknown = %b0 %b0
 RedundantCoding = %b0 %b1
 NoRedundantCoding = %b1 %b0
 SamplePaddingValue = 3*3BIT
 SampleIsDifferenceValue = BIT
 SampleDegradationPriority = UNSIGNED-INT16
 VendorExtensionUUIDBox = UUIDBoxLength UUIDBoxType [UUIDBoxLongLength] UUIDBoxUUID
 UUIDBoxData
 UUIDBoxType = %d117 %d117 %d105 %d100
 UUIDBoxLength = BoxLength
 UUIDBoxLongLength = LongBoxLength
 UUIDBoxUUID = UUID
 UUIDBoxData = *BYTE
 BoxLength = UNSIGNED-INT32
 LongBoxLength = UNSIGNED-INT64

 UNSIGNED-INT64 = 2UNSIGNED-INT32
 UNSIGNED-INT32 = 2UNSIGNED-INT16
 UNSIGNED-INT16 = 2BYTE
 BYTE = 8BIT
 BIT = %b0-1

 RESERVED-UNSIGNED-INT64 = 2RESERVED-UNSIGNED-INT32
 RESERVED-UNSIGNED-INT32 = 2RESERVED-UNSIGNED-INT16
 RESERVED-UNSIGNED-INT16 = 2RESERVED-BYTE

https://go.microsoft.com/fwlink/?LinkId=183695
https://go.microsoft.com/fwlink/?LinkId=123096

36 / 65

[MS-SSTR] - v20241119
Smooth Streaming Protocol
Copyright © 2024 Microsoft Corporation
Release: November 19, 2024

RESERVED-BYTE = 8RESERVED-BIT

RESERVED-BIT = %b0-0 ; RESERVED-BIT defined as a bit 0, but not used

2.2.5 Sparse Stream Pointer

The SparseStreamPointer field and related fields contain data that is required to locate the latest
fragment of a sparse stream. This message is used in conjunction with a Fragment Response
message.

SparseStreamPointer (variable): A set of data that indicates the latest fragment for all related
sparse streams.

SparseStreamSet (variable): The set of latest fragment pointers for all sparse streams that are
related to a single requested fragment.

SparseStreamFragment (variable): The latest fragment pointer for a single related sparse stream.

SparseStreamName (variable): The stream name of the related sparse name. The value of this

field MUST match the Name field of the StreamElement field that describes the stream, specified
in section 2.2.2.3, in the Manifest Response.

SparseStreamTimeStamp (variable): The timestamp of the latest timestamp for a fragment for the
sparse stream that occurs at the same time or earlier than the presentation than the requested
fragment.

The syntax of the fields that are defined in this section, specified in ABNF [RFC5234], is as follows.

 SparseStreamPointer = *1(HeaderData DELIMETER) "ChildTrack" "="
 DQ SparseStreamSet *(DELIMETER SparseStreamSet) DQ
 HeaderData = 1*CHAR
 DELIMETER = ";"
 SparseStreamSet = SparseStreamFragment *("," SparseStreamFragment)
 SparseStreamFragment = SparseStreamName "=" SparseStreamTimeStamp
 SparseStreamTimeStamp = STRING-UINT64

2.2.6 Fragment Not Yet Available

The Fragment Not Yet Available message is an HTTP response that has an empty message body field
and the HTTP status code 412 Precondition Failed, as specified in [RFC2616].

2.2.7 Live Ingest

The LiveIngest field and related fields contain data that is required to request the start of a live
broadcast.

LiveIngestRequest (variable): The URI [RFC2396] to which the LiveIngestRequest field is sent.

Identifier (variable): A unique URISAFE-IDENTIFIER that enables the server to differentiate
between different streams. Each identifier can have at most one active connection.

EventID (variable): An optional identifier that enables the reuse of URLs without collision due to
downstream cache pollution. Publishing streams that have different event names to the same
published URL simultaneously is an error. All encoders MUST use the same EventID identifier,
either blank or a string. The default value is the empty string.

https://go.microsoft.com/fwlink/?LinkId=123096
https://go.microsoft.com/fwlink/?LinkId=90372
https://go.microsoft.com/fwlink/?LinkId=90339

37 / 65

[MS-SSTR] - v20241119
Smooth Streaming Protocol
Copyright © 2024 Microsoft Corporation
Release: November 19, 2024

StreamID (variable): A unique identifier that is used to collate fragments in the case of encoder
failover. It allows separate encoder nodes to POST to separate URLs, but multiple active

connection URLs that have the same StreamID identifier can be used for redundancy. In that
case, the server will filter out duplicated or out-of-order fragments. This identifier is commonly

used to distinguish between video quality (for example, "Streams(1080p)", "Streams(720p)",
"Streams(480p)").

The syntax of the fields that are defined in this section, specified in ABNF [RFC5234], is as follows.

 LiveIngestRequest = Protocol "://" BroadcastURL Identifier
 Protocol = "http" / "https"
 BroadcastURL = ServerAddress "/" PresentationPath
 ServerAddress = URISAFE-IDENTIFIER
 PresentationPath = URISAFE-IDENTIFIER ".isml"
 Identifier = [EventID] StreamID
 EventID = "/Events(" URISAFE-IDENTIFIER ")"
 StreamID = "/Streams(" URISAFE-IDENTIFIER ")"

LiveIngestMessage (variable): The structure of the long-running POST operation requests that are
sent from the encoder to the LiveIngestRequest field.

The syntax of the fields that are defined in this section, specified in ABNF [RFC5234], is as follows.

 LiveIngestMessage = FileType [StreamManifest] LiveServerManifest MoovBox *1Fragment

2.2.7.1 FileType

FileType (variable): Specifies the subtype and intended use of the MPEG-4 ([MPEG4-RA]) file, and
high-level attributes.

MajorBrand (variable): Specified the major brand of the media file. MUST be set to "isml".

MinorVersion (variable): Specifies the minor version of the media file. MUST be set to 1.

CompatibleBrands (variable): Specifies the supported brands of MPEG-4. MUST include "piff" and

"iso2".

The syntax of the fields that are defined in this section, specified in ABNF [RFC5234], is as follows.

 FileType = MajorBrand MinorVersion CompatibleBrands
 MajorBrand = STRING-UINT32
 MinorVersion = STRING-UINT32
 CompatibleBrands = "piff" "iso2" 0*(STRING-UINT32)

2.2.7.2 StreamManifestBox

The StreamManifestBox field and related fields contain metadata that is required to inform the client
of all comprising streams in a broadcast. If StreamManifestBox is present in a POST request, the
server sends a response, but it does not initialize the broadcast until all of the streams that are

enumerated in the StreamManifest have sent an initial POST request. If the desired functionality is
for the server broadcast to begin as soon as the first encoder connects, StreamManifestBox MUST
be omitted.

StreamManifestBox (variable): Contains the StreamManifest and associated metadata.

The syntax of the fields that are defined in this section, specified in ABNF [RFC5234], is as follows.

https://go.microsoft.com/fwlink/?LinkId=123096
https://go.microsoft.com/fwlink/?LinkId=327787
https://go.microsoft.com/fwlink/?LinkId=123096
https://go.microsoft.com/fwlink/?LinkId=123096

38 / 65

[MS-SSTR] - v20241119
Smooth Streaming Protocol
Copyright © 2024 Microsoft Corporation
Release: November 19, 2024

 StreamManifestBox = SMBoxType SMBoxLength SMBoxUUID SMVersion SMFlagsStreamManifest
 SMBoxType = %d117 %d117 %d105 %d100
 SMBoxLength = BoxLength
 SMBoxUUID = %x3C %x2F %xE5 %x1B %xEF %xEE %x40 %xA3
 %xAE %x81 %x53 %x00 %x19 %x9D %xC3 %x48
 SMVersion = STRING-UINT8
 SMFlags = 24*24RESERVED-BIT

StreamManifest (variable): Specifies a Synchronized Multimedia Integration Language (SMIL) 2.0-
compliant document [SMIL2.1] that informs the server of all streams to allow broadcast delay until
all are acquired. This field MUST be a well-formed XML document [XML] that is subject to the
following constraints:

 The document's root element is a SMIL element.

 The document's XML declaration's major version is 1.

 The document's XML declaration's minor version is 0.

 The document does not use a document type definition (DTD).

 The document uses an encoding that is supported by the client implementation.

 The XML elements that are specified in this document MUST use
"http://www.w3.org/2001/SMIL20/Language" for a namespace. Instead of the default
namespace, a named namespace MAY be used. In that case, all the following tags MUST have
the namespace prefix that maps to this XML namespace.

Prolog (variable): The Prolog field, as specified in [XML].

StreamSMIL (variable): The body of the document field, as specified in section 2.2.7.2.1.

Misc (variable): The Misc field, as specified in [XML].

The syntax of the fields that are defined in this section, specified in ABNF [RFC5234], is as follows.

 StreamManifest = prolog StreamSMIL Misc

2.2.7.2.1 StreamSMIL

The StreamSMIL field and related fields encapsulate the data that is required for the client to identify
all the streams in a presentation.

SMIL (variable): Encapsulates all the metadata that is required for the client to identify all the
streams in a presentation.

SMILReference (variable): Specifies a single stream. The server MUST wait for this stream before
starting the broadcast. The src attribute is required and specifies the stream's relative URL.

The syntax of the fields that are defined in this section, specified in ABNF [RFC5234], is as follows.

 SMIL = "<" SMILMediaElementName SMILMediaNamespace ">" *1S
 SMILStreamBody *1S
 "</" SMILMediaElementName ">"
 SMILMediaElementName = "smil"
 SMILMediaNamespace = "xmlns" Eq DQ "http://www.w3.org/2001/SMIL20/Language" DQ
 SMILStreamBody = "<body>" S "<par>" S *1(SMILReference) S "</par>" S "</body>"
 SMILReference = "<ref" S "src" Eq DQ "Streams(" IDENTIFIER ")" DQ S "/>"

https://go.microsoft.com/fwlink/?LinkId=325594
https://go.microsoft.com/fwlink/?LinkId=90598
https://go.microsoft.com/fwlink/?LinkId=123096

39 / 65

[MS-SSTR] - v20241119
Smooth Streaming Protocol
Copyright © 2024 Microsoft Corporation
Release: November 19, 2024

2.2.7.3 LiveServerManifestBox

The LiveServerManifestBox field and related fields comprise the data that is provided to the server
by the encoder. The data enables the server to interpret the incoming live stream and assign

semantic meaning to the stream's tracks.

LiveServerManifestBox (variable): Contains the LiveServerManifestBox and associated
metadata.

The syntax of the fields that are defined in this section, specified in ABNF [RFC5234], is as follows.

 LiveServerManifestBox = LSBoxType LSBoxLength LSBoxUUID LSVersion LSFlags LSManifest
 LSBoxType = %d117 %d117 %d105 %d100
 LSBoxLength = BoxLength
 LSUUID = %xA5 %xD4 %x0B %x30 %xE8 %x14 %x11 %xDD
 %xBA %x2F %x08 %x00 %x20 %x0C %x9A %x66
 LSVersion= IDENTIFIER
 LSFlags= 24*24RESERVED-BIT

LiveServerManifest (variable): A SMIL 2.0-compliant document [SMIL2.1] that specifies the
metadata for all the tracks that appear in a live presentation. This field MUST be a well-formed
XML document [XML] that is subject to the following constraints:

 The document's root element is a SMIL field.

 The document's XML declaration's major version is 1.

 The document's XML declaration's minor version is 0.

 The document does not use a document type definition (DTD).

 The document uses an encoding that is supported by the client implementation.

 The XML elements that are specified in this document MUST use

"http://www.w3.org/2001/SMIL20/Language" for a namespace. Instead of the default namespace,
a named namespace MAY be used. In that case, all the following tags MUST have the namespace
prefix that maps to this XML namespace.

 The XML elements that are specified in this document do not use XML namespaces.

Prolog (variable): The Prolog field, as specified in [XML].

LiveSMIL (variable): The body of the document field, as specified in section 2.2.7.3.1.

Misc (variable): The Misc field, as specified in [XML].

The syntax of the fields that are defined in this section, specified in ABNF [RFC5234], is as follows.

 LiveServerManifest = prolog LiveSMIL Misc

2.2.7.3.1 LiveSMIL

The LiveSMIL field and related fields comprise the data that is required for the client to identify all
the streams in a presentation.

SMIL (variable): The root container that is used by SMIL 2.0 [SMIL2.1]. The xmlns field MUST be

set to http://www.w3.org/2001/SMIL20/Language.

SMILLiveHead (variable): The head element that contains the presentation-level metadata.

https://go.microsoft.com/fwlink/?LinkId=123096
https://go.microsoft.com/fwlink/?LinkId=325594
https://go.microsoft.com/fwlink/?LinkId=90598
https://go.microsoft.com/fwlink/?LinkId=325594

40 / 65

[MS-SSTR] - v20241119
Smooth Streaming Protocol
Copyright © 2024 Microsoft Corporation
Release: November 19, 2024

SMILLiveMeta (variable): The metadata of the presentation. The following attributes are supported:

name: Specifies the semantic meaning of metadata. This attribute MUST be present.

content: Specifies the value of metadata. This attribute MUST be present.

SMILLiveBody (variable): The body element that contains track information and references to other

media.

SMILTrack (variable): One of the comprising tracks in the presentation. Can be video, audio, or
text. The following attributes are supported:

 src: Specifies the file in which the track resides. This attribute is optional. For all Live Smooth
Streaming manifests, the src attribute SHOULD be set to "Streams".

 systemBitrate: Specifies the bit rate of the track. This attribute MUST be present.

SMILParam (variable): Specifies a single parameter for a particular SMILTrack. The following

attributes are supported:

 name: Specifies the name of the parameter. This attribute MUST be present.

 value: Specifies the parameter’s value. This attribute MUST be present.

 valuetype: Specifies "type" of value attribute. This attribute MUST be present and MUST be
set to "data".

The valid range and semantic meaning of the name and value attributes vary as described in the

following table, depending on the value of the name attribute.

Name Value

trackID (required) A required attribute that MUST be present. It specifies the ID of the track
containing the described video, audio, or textstream element. This value
correlates to the track_ID field in the tfhd and trak boxes for the track.

trackName An optional parameter that specifies the client-facing name of the track and
appears in the Fragments() noun as part of the URL. All the tracks that have the
same value for systemBitrate and attributes MUST have distinct track names. If
this parameter is omitted, the following default track names are assigned by IIS:
 video tracks: value="video"
 audio tracks: value="audio"
 textstream tracks: value="textstream"

manifestOutput An optional parameter that specifies whether sample data for the particular track
is accumulated into the manifest and therefore made immediately available to
the client. Valid values for this parameter are TRUE or FALSE. If omitted, the
default value is FALSE and sample data is not accumulated in the manifest.

parentTrackName An optional parameter that identifies the track as being a sparse track and also
specifies the name of its parent track. If this track is a control track, its data is
downloaded transparently with the data from the parent track. Valid values for
this parameter are trackName parameters for other tracks in the presentation.
The tracks that are referenced by parentTrackName MUST NOT be control
tracks and MUST NOT be sparse tracks.

{namepace}_{custom
attribute}

An optional parameter allowing the definition of additional extended attributes
for a track. The namespace and custom attribute are defined on a per-use basis
with the brackets omitted. This parameter can be used to discriminate between
tracks having the same track name and bit rate.

timescale An optional parameter that specifies the timescale for this track, as the number

of units that pass in 1 second. If this parameter is not present, the default value
that is used is 10,000,000, which maps to increments of 100 nanoseconds.

Subtype An optional parameter that specifies information that can be used by the client
to identify characteristics of the track.

41 / 65

[MS-SSTR] - v20241119
Smooth Streaming Protocol
Copyright © 2024 Microsoft Corporation
Release: November 19, 2024

The syntax of the fields that are defined in this section, specified in ABNF [RFC5234], is as follows.

 SMIL = "<" SMILMediaElementName SMILMediaNamespace ">" *1S
 SMILLiveHead S SMILLiveBody *1S
 "</" SMILMediaElementName ">"
 SMILMediaElementName = "smil"
 SMILMediaNamespace = "xmlns" Eq DQ "http://www.w3.org/2001/SMIL20/Language" DQ
 SMILLiveHead = "<head>" S SMILLiveMeta S "</head>"
 SMILLiveMeta = "<meta " S "name" Eq DQ IDENTIFIER DQ S "content" Eq DQ IDENTIFIER DQ *1S
 "/>"
 SMILLiveBody = "<body>" S "<switch>" S SMILTracks S "</switch>" S "</body>"
 SMILTracks = 1*(SMILVideoTrack / SMILAudioTrack / SMILTexttrack)
 SMILVideoTrack = ="<video S SMILTrackAttributes S ">" S 1*SMILParam S "</video>"
 SMILAudioTrack ="<audio S SMILTrackAttributes S ">" S 1*SMILParam S "</audio>"
 SMILTextTrack = ="<textstream S SMILTrackAttributes S ">" S 1*SMILParam S "</textstream>"
 SMILTrackAttributes = "src" S Eq S DQ "Streams" DQ S "systemBitrate" S Eq S DQ
 1*DIGIT DQ S ">"
 SMILParam = "<param" S "name" Eq DQ IDENTIFIER DQ S "value" Eq DQ IDENTIFIER DQ *1S
 "valuetype" Eq DQ "data" DQ S "/>"

2.2.7.4 MoovBox

The MoovBox field is as described in [ISO/IEC-14496-12].

2.2.7.5 Fragment

The fragment consists of the MoofBox (section 2.2.4.1) field and the MdatBox (section 2.2.4.8) field.

To handle live streams, the server requires a TrackFragmentExtendedHeader field inside the
TrafBox (section 2.2.4.3) field.

2.2.7.5.1 Track Fragment Extended Header

The TrackFragmentExtendedHeader field and related fields specify the fragment's duration and

absolute starting offset in timescale increments for the track. These fields MUST be present for every
fragment in a live stream originating from an encoder and SHOULD be omitted otherwise.

Version (variable): Specified a value that is limited to 1 or 0 signifying 64-bit or 32-bit times,
respectively.

FragTime (variable): Specifies the absolute time of the fragment's first sample in timescale
increments. MUST be a 32-bit integer if Version = 0 and a 64-bit integer otherwise.

FragDuration (variable): Specifies the duration of the entire fragment in timescale increments.
MUST be a 32-bit integer if Version = 0 and a 64-bit integer otherwise.

The syntax of the fields that are defined in this section, specified in ABNF [RFC5234], is as follows.

 TrackFragmentExtendedHeader = Version FragTime FragDuration TFEHFlags
 Version = STRING-UINT8
 FragTime = STRING-UINT32 / STRING-UINT64
 FragDuration = STRING-UINT32 / STRING-UINT64
 TFEHFlags = 24*24RESERVED-BIT

2.2.8 Server-to-Server Ingest

The ServerIngest field and related fields contain data that is required when a server is requesting a
broadcast and its related streams from another server.

https://go.microsoft.com/fwlink/?LinkId=123096
https://go.microsoft.com/fwlink/?LinkId=183695
https://go.microsoft.com/fwlink/?LinkId=123096

42 / 65

[MS-SSTR] - v20241119
Smooth Streaming Protocol
Copyright © 2024 Microsoft Corporation
Release: November 19, 2024

ServerIngestRequest (variable): The URI [RFC2396] to which the ServerIngest request is sent.

EventID (variable): An optional identifier that enables the reuse of URLs, as specified in section
2.2.7.

The syntax of the fields that are defined in this section, specified in ABNF [RFC5234], is as follows.

 ServerToServerRequest= Protocol "://" BroadcastURL Identifier
 Protocol = "http" / "https"
 BroadcastURL = ServerAddress "/" PresentationPath "/streammanifest"
 ServerAddress = URISAFE-IDENTIFIER
 PresentationPath = URISAFE-IDENTIFIER ".isml"

The response that is sent by a server that is receiving a ServerIngestRequest resembles a
LiveIngestMessage, as specified in sections 2.2.7.1 through 2.2.7.5.

https://go.microsoft.com/fwlink/?LinkId=90339
https://go.microsoft.com/fwlink/?LinkId=123096

43 / 65

[MS-SSTR] - v20241119
Smooth Streaming Protocol
Copyright © 2024 Microsoft Corporation
Release: November 19, 2024

3 Protocol Details

3.1 Client Details

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does not mandate that implementations

adhere to this model as long as their external behavior is consistent with that described in this
document.

The client acts in accordance with the following model.

Figure 3: Client state machine diagram

The main data elements that are required by any implementation are:

 Presentation Description: A hierarchical data element that encapsulates metadata from the

presentation, as specified in section 3.1.1.1.

 Fragment Description: Metadata and samples for a single fragment, as specified in section
3.1.1.2.

 Active Presentation: An instance of the Presentation Description data element. This data element
is maintained as state by the client.

 Presentation Available: A flag that indicates whether the Active Presentation has been successfully

initialized. This data element is maintained as state by the client.

 Sparse Stream Pointer Header: A string that contains the name of the HTTP header that is used to
carry the Sparse Stream Pointer message, specified in section 2.2.5.

3.1.1.1 Presentation Description

The Presentation Description data element encapsulates all metadata for the presentation.

Presentation Metadata: A set of metadata that is common to all streams in the presentation.
Presentation Metadata comprises the following fields, specified in section 2.2.2.1:

 MajorVersion

 MinorVersion

 TimeScale

44 / 65

[MS-SSTR] - v20241119
Smooth Streaming Protocol
Copyright © 2024 Microsoft Corporation
Release: November 19, 2024

 Duration

 IsLive

 LookaheadCount

 DVRWindowLength

Stream Collection: A collection of Stream Description data elements, as specified in section 3.1.1.1.2.

Protection Description: A collection of Protection System Metadata Description data elements, as
specified in section 3.1.1.1.1.

3.1.1.1.1 Protection System Metadata Description

The Protection System Metadata Description data element encapsulates metadata that is specific to a
single Content Protection System.

Protection Header Description: Content protection metadata that pertains to a single Content
Protection System. Protection Header Description comprises the following fields, specified in section
2.2.2.2:

 SystemID

 ProtectionHeaderContent

3.1.1.1.2 Stream Description

The Stream Description data element encapsulates all metadata that is specific to a single stream.

Stream Metadata: A set of metadata that is common to all tracks for the stream. Stream Metadata
comprises the following fields, specified in section 2.2.2.3:

 StreamTimeScale

 Type

 Name

 NumberOfFragments

 NumberOfTracks

 Subtype

 Url

 StreamMaxWidth

 StreamMaxHeight

 DisplayWidth

 DisplayHeight

Track Collection: A collection of Track Description data elements, as specified in section 3.1.1.1.2.1.

Fragment Reference Collection: An ordered collection of Fragment Reference Description data
elements, as specified in section 3.1.1.1.3.

Sparse Stream Flag: A Boolean flag that specifies whether the stream is a sparse stream.

45 / 65

[MS-SSTR] - v20241119
Smooth Streaming Protocol
Copyright © 2024 Microsoft Corporation
Release: November 19, 2024

Parent Stream: A reference to the Stream Description data element for this stream's Parent Stream.
This data element SHOULD NOT be set unless the stream is a sparse stream.

Last Downloaded Fragment: A 64-bit, unsigned integer that holds a reference to the Last Known
Fragment for a sparse stream. This data element SHOULD NOT be set unless the stream is a sparse

stream.

3.1.1.1.2.1 Track Description

The Track Description data element encapsulates all metadata that is specific to a single track.

Track Metadata: A set of metadata that is common to all fragments for the track. Track Metadata
contains the following fields, specified in section 2.2.2.5:

 Index

 Bitrate

 MaxWidth

 MaxHeight

 SamplingRate

 AudioTag

 BitsPerSample

 PacketSize

 CodecPrivateData

 NALUnitLengthField

Custom Attributes Collection: A collection of Custom Attribute Description data elements, as specified

in section 3.1.1.1.2.1.1.

3.1.1.1.2.1.1 Custom Attribute Description

The Custom Attribute Description data element encapsulates a key/value pair that disambiguates
tracks.

Key Value Pair: A single key/value pair. Key Value Pair contains the following fields, specified in
section 2.2.2.5.1:

 CustomAttributeName

 CustomAttributeValue

3.1.1.1.3 Fragment Reference Description

The Fragment Reference Description data element encapsulates metadata that is needed to identify a
fragment in the stream and to create a corresponding Fragment Request message.

Fragment Reference Metadata: A set of metadata that describes a set of related fragments in all
tracks for the stream. Fragment Reference Metadata contains a collection of Track-Specific Fragment
Reference Description data elements, specified in section 3.1.1.1.3.1, and the following fields,
specified in section 2.2.2.6:

 FragmentNumber

46 / 65

[MS-SSTR] - v20241119
Smooth Streaming Protocol
Copyright © 2024 Microsoft Corporation
Release: November 19, 2024

 FragmentDuration

 FragmentTime

Track-Specific Fragment Reference Collection: A collection of Track-Specific Fragment Reference
Description data elements, as specified in section 3.1.1.1.3.1.

3.1.1.1.3.1 Track-Specific Fragment Reference Description

The Fragment Reference Description data element encapsulates metadata that is needed to identify a
fragment in the stream and to create a corresponding Fragment Request message.

Track-Specific Fragment Reference Metadata: A set of metadata that describes a set of related
fragments in all tracks for the stream. Fragment Reference Metadata contains the following fields,
specified in section 2.2.2.6:

 TrackFragmentIndexAttribute

 ManifestOutputSample

3.1.1.2 Fragment Description

The Fragment Description data element encapsulates metadata and sample data for a single
fragment.

Fragment Metadata: A set of metadata that is common to all samples in the fragment. Fragment
Metadata contains the following fields:

 SequenceNumber, specified in section 2.2.4.2

 DefaultSampleDuration, specified in section 2.2.4.4

 DefaultSampleSize, specified in section 2.2.4.4

 DefaultSampleFlags, specified in section 2.2.4.4

 FirstSampleFlags, specified in section 2.2.4.5

 VendorExtensionUUIDBox, specified in section 2.2.4.9

Sample Collection: A collection of Sample Description data elements, as specified in section 3.1.1.2.1.

3.1.1.2.1 Sample Description

The Sample Description data element encapsulates the metadata and data for a single sample.

Sample Metadata: A set of attributes that pertain to the sample. Sample Metadata contains the
following fields:

 SampleDuration, specified in section 2.2.4.5

 TrunBoxSampleFlags, specified in section 2.2.4.5

 SampleSize, specified in section 2.2.4.5

 SampleCompositionTimeOffset, specified in section 2.2.4.5

 SampleData, specified in section 2.2.4.6

47 / 65

[MS-SSTR] - v20241119
Smooth Streaming Protocol
Copyright © 2024 Microsoft Corporation
Release: November 19, 2024

3.1.2 Timers

None.

3.1.3 Initialization

Initialization of the client is triggered by an Open Presentation event, specified in section 3.1.4.1. At
Initialization, the Presentation Available flag is set to false.

The Sparse Stream Pointer Header is initialized from configuration above the Smooth Streaming
Transport Protocol layer. The configured value on the client MUST match the configured value on the

server for interoperability. <3>

3.1.4 Higher-Layer Triggered Events

The client is initiated by a higher-layer implementation that decodes samples for playback to the end

user and uses the state of playback and end-user interaction to initiate Fragment Requests by the

client. The following events trigger specific behavior on the client:

 Open Presentation, specified in section 3.1.4.1

 Get Fragment, specified in section 3.1.4.2

 Close Presentation, specified in section 3.1.4.3

3.1.4.1 Open Presentation

The Open Presentation event is used at the start of a viewing session. This event has no effect if the
value of the Presentation Available flag is TRUE.

The higher-layer implementation provides the following data element:

 Presentation URI: A string whose syntax matches the syntax of the PresentationURI field,

specified in section 2.2.1.

When the Open Presentation event is triggered, the client sends a Manifest Request message to the
server. Creation of the Manifest Request message is subject to the following rule:

 The value of the PresentationURI field in the Fragment Request is set to the value of the
presentation URI data element.

If the processing of the Manifest Request, as specified in section 3.1.5.1, yields a Presentation
Description data element, the client MUST perform the following operations:

 Set the Presentation Available flag to TRUE.

 Return the Presentation Description data element to the higher-layer implementation.

3.1.4.2 Get Fragment

The Get Fragment event is used during the course of the viewing session. This event has no effect

when the value of the Presentation Available flag is false.

The higher-layer implementation provides the following data elements:

 Presentation URI: A string whose syntax matches the syntax of the PresentationURI field,
specified in section 2.2.1.

 Request Stream: A Stream Description data element for the fragment to Request.

48 / 65

[MS-SSTR] - v20241119
Smooth Streaming Protocol
Copyright © 2024 Microsoft Corporation
Release: November 19, 2024

 Request Track: A Track Description data element for the fragment to Request.

 Request Fragment: A Fragment Reference Description data element for the fragment to Request.

When the Get Fragment event is triggered, the client sends a Fragment Request message to the
server. Creation of the Fragment Request message is subject to the following rules:

 The value of the PresentationURI field in the Fragment Request is set to the value of the
Presentation URI data element.

 The value of the BitratePredicate field in the Fragment Request is set to the value of the Bitrate
field in the Request Track data element.

 One instance of the CustomAttributesPredicate field is created per instance of the Custom
Attribute Description data element in the Request Track data element.

 The value of the CustomAttributeKey field of each CustomAttributesPredicate field is set to

the value of the CustomAttributeName field in the corresponding CustomAttributesElement

field.

 The value of the CustomAttributeValue field of each CustomAttributesPredicate field is set to
the value of the CustomAttributeValue field in the corresponding CustomAttributesElement
field.

 The value of the StreamName field in the Fragment Request is set to the value of the Name field

in the Stream Description data element.

 The value of the Time field in the Fragment Request is set to the value of the FragmentTime
field in the Request Fragment data element.

If the processing of the Fragment Response, as specified in section 3.1.5.2, yields a Fragment
Description data element, the client MUST return the data element to the higher-layer
implementation.

No state change is effected when the Get Fragment event is triggered.

3.1.4.3 Close Presentation

The Close Presentation event is used at the end of a viewing session. This event has no effect if the
value of the Presentation Available flag is false.

When the Close Presentation event is triggered, the client sets the Presentation Available flag to false
and enters the Final state.

3.1.5 Processing Events and Sequencing Rules

The following event processing and sequencing rules apply:

 Manifest Request and Manifest Response, as specified in section 3.1.5.1

 Fragment Request and Fragment Response, as specified in section 3.1.5.2

 The expected Response from the server to a Fragment Request message is a Fragment Response
message. If the Response to a received Fragment Request message contains a message body
[RFC2616] but is not a valid Fragment Response, the client SHOULD return the error to the higher
layer.

 The expected Response from the server to a Manifest Request Message is a Manifest Response

message. If the Response that is received is not a valid Manifest Response message, the client
MUST enter the Final state.

https://go.microsoft.com/fwlink/?LinkId=90372

49 / 65

[MS-SSTR] - v20241119
Smooth Streaming Protocol
Copyright © 2024 Microsoft Corporation
Release: November 19, 2024

3.1.5.1 Manifest Request and Manifest Response

When a Manifest Request is sent to the server, the client MUST wait for a Manifest Response message
to arrive. If the underlying transport returns an error, the client MUST enter the Final state.

If the underlying transport returns a Response that adheres to the syntax of the Fragment Response
message, the message is processed to yield a Presentation Description, subject to the following
processing rules:

 The Presentation Metadata data element is populated by using data in the
SmoothStreamingMedia field, as specified in section 2.2.2.1, subject to the field mapping rules
that are specified in section 3.1.1.1.

 The Protection Description data element is populated by using data in the ProtectionElement

field, as specified in section 2.2.2.2, subject to the field mapping rules that are specified in section
3.1.1.1.1.

 The Stream Collection data element is populated by creating one Stream Description data element

per instance of the StreamElement field, specified in section 2.2.2.3.

 Each Stream Description data element is populated by using data in the corresponding
StreamElement field, subject to the field mapping rules that are specified in section 3.1.1.1.2.

 If the Stream Description data element's Parent Track field is set, its Sparse Stream Flag is set
to true. Otherwise, the Sparse Stream Flag is set to false.

 The Track Collection data element of each Stream Description data element is populated by
creating one Track Description data element per instance of the TrackElement field, specified in
section 2.2.2.5, in the corresponding StreamElement field.

 Each Track Description data element is populated by using data in the corresponding
TrackElement field, subject to the field mapping rules that are specified in section 3.1.1.1.2.1.

 The Custom Attributes Collection data element of each Track Description data element is

populated by creating one Custom Attribute Description data element per instance of the
CustomAttributesElement field, specified in section 2.2.2.5.1, in the corresponding
TrackElement field.

 Each Custom Attribute Description data element is populated by using data in the corresponding
CustomAttributesElement field, subject to the field mapping rules that are specified in section
2.2.2.5.1.

 The Fragment Reference Collection data element of each Stream Description data element is
populated by creating one Fragment Reference Description data element per instance of the
StreamFragmentElement field, specified in section 2.2.2.6, in the corresponding
StreamElement field.

 Each Fragment Reference Description data element is populated by using data in the
corresponding StreamFragmentElement field, subject to the field mapping rules that are

specified in section 3.1.1.1.3.

 The Fragment Reference Collection data element of each Stream Description data element is
populated by creating one Fragment Reference Description data element per instance of the
StreamFragmentElement field, specified in section 2.2.2.6, in the corresponding
StreamElement field.

 Each Fragment Reference Description data element is populated by using data in the
corresponding StreamFragmentElement field, subject to the field mapping rules that are

specified in section 3.1.1.1.3.

50 / 65

[MS-SSTR] - v20241119
Smooth Streaming Protocol
Copyright © 2024 Microsoft Corporation
Release: November 19, 2024

 The Track-Specific Fragment Reference Collection data element of each Fragment Reference
Description data element is populated by creating one Track-Specific Fragment Reference

Description data element per instance of the TrackFragmentElement field, specified in section
2.2.2.6.1, in the corresponding StreamFragmentElement field.

 Each Track-Specific Fragment Reference Description data element is populated by using data in
the corresponding StreamFragmentElement field, subject to the field mapping rules that are
specified in section 3.1.1.1.3.

After the population of the Presentation Description, the following rules MUST be applied:

 If the StreamTimeScale field for any Stream Description data element is not set, the
StreamTimeScale field for that Stream Description data element is set to the value of the
Duration field of the Presentation Description data element.

 If the Duration field of the Presentation Metadata data element is equal to 0, the Duration field is
set to the result of the following computation:

 For each Stream Description data element, compute a Stream Duration value by summing the
Fragment Duration fields of each Fragment Reference Description data element, and dividing
by the value of the StreamTimeScale field for that Stream Description data element.

 Set the Duration field by multiplying the maximum of the set of computed Stream Duration

values by the value of the TimeScale field in the Presentation Metadata data element.

 If the Name field of the Stream Description data element is not set, the Name element is set to
the value of the Type field. If, after this operation, the Name fields of all Stream Description data
elements are not unique with respect to each other, the data is considered invalid, and the client
SHOULD enter the Final state without yielding a Presentation Description data element.

 If, for any Stream Description data element, the StreamMaxWidth field is not set, and the Type
field is "video", the StreamMaxWidth field is set to the maximum of all MaxWidth fields in all

Track Description data elements that are contained in the Stream Description data element.

 If, for any Stream Description data element, the StreamMaxHight field is not set, and the Type
field is "video", the StreamMaxHeight field is set to the maximum of all MaxHeight fields in all
Track Description data elements that are contained in the Stream Description data element.

 In each Stream Description data element, the client MUST iterate through the Fragment Reference
Collection in order and apply the following rules for each Fragment Reference Description data
element:

 If the current Fragment Reference Description data element is the last in the collection and the
value of the FragmentDuration field is not set, the data is considered invalid, and the client
MUST enter the Final state without yielding a Presentation Description data element.

 If neither of the values of the FragmentTime and FragmentDuration fields for a single
Fragment Reference Description is set, the data is considered invalid, and the client MUST
enter the Final state without yielding a Presentation Description data element.

 If the current Fragment Reference Description data element is the first in the collection and
the value of the FragmentTime field in the collection is not set, the value of the
FragmentTime field is set to 0.

 If the value of the FragmentTime field in the current Fragment Reference Description data
element is not set, the value of the FragmentTime field is set to the sum of the values of the
FragmentTime and FragmentDuration fields of the preceding Fragment Reference
Description data element.

51 / 65

[MS-SSTR] - v20241119
Smooth Streaming Protocol
Copyright © 2024 Microsoft Corporation
Release: November 19, 2024

 If the value of the FragmentDuration field in the current Fragment Reference Description
data element is not set, the value of the FragmentDuration field is set to the value that is

obtained by subtracting the value of the FragmentTime field from the value of the
FragmentTime field in the following Fragment Reference Description data element in the

collection.

 If the value of the FragmentTime field is greater than the value of the FragmentTime field
in the following Fragment Reference Description data element in the collection, the client
MUST enter the Final state without yielding a Presentation Description data element.

If the underlying transport returns a Response that does not adhere to the syntax of the Manifest
Response message, the client MUST enter the Final state without yielding a Presentation Description
data element.

3.1.5.2 Fragment Request and Fragment Response

When a Fragment Request is sent to the server, the client MUST wait for a Fragment Response

message to arrive. If the underlying transport returns an error, the client MUST enter the Final state.

Processing makes use of the following variables:

Current Sample Start: The offset of the beginning of the current sample, in bytes. This value of
Current Sample Start is initialized to 0.

Sparse Stream Notifications: A collection in which each entry contains two data points:

 Stream Description Reference: A reference to the Stream Description data element for which a
new fragment is available.

 Timestamp: A 64-bit, unsigned integer that represents the timestamp of the new fragment.

If the underlying transport returns a Response that adheres to the syntax of the Fragment Response
message, the message is processed to yield a Presentation Description, subject to the following
processing rules:

 The Fragment Description data element is using data in the FragmentMetadata field, as specified
in section 2.2.4, subject to the field mapping rules that are specified in section 3.1.1.2.

 The Sample Collection data element is populated by creating a Sample Description data element

per instance of the TrunBoxPerSampleFields field, specified in section 2.2.4.5.

 Each Sample Description data element is populated by using data in the FragmentMetadata
field, as specified in section 2.2.4.5, subject to the field mapping rules that are specified in section
3.1.1.1.2.

After the population of the Fragment Description, the following rules MUST be applied:

 If the FirstSampleFlags field of the Fragment Description is not set, the value of this field is set
to the value of the DefaultSampleFlags field.

 In each Fragment Description data element, the client MUST iterate through the Fragment

Collection in order and apply the following rules for each Fragment Description data element:

 If the current Sample Description data element is the first in the collection and the value of
the SampleFlags field is not set, the value of the SampleFlags field is set to the value of the
FirstSampleFlags field in the Fragment Description data element.

 If the value of the SampleDuration field of the current Sample Description data element is
not set, the value is set to the value of the DefaultSampleDuration field in the Fragment

Description data element.

52 / 65

[MS-SSTR] - v20241119
Smooth Streaming Protocol
Copyright © 2024 Microsoft Corporation
Release: November 19, 2024

 If the value of the SampleSize field of the current Sample Description data element is not
set, the value is set to the value of the DefaultSampleSize field in the Fragment Description

data element.

If the underlying transport returns a Response that does not adhere to the syntax of the Fragment

Response message, the client MUST enter the Final state without yielding a Fragment Description data
element and stop further processing of these rules.

If the Sparse Track Flag in the Stream Description data element that is used to generate the Fragment
Request is true, the client MUST update the Last Downloaded Fragment field of the Stream Description
by setting the Last Downloaded Timestamp value to match the timestamp of the Fragment Request.

The client MUST attempt to match the HTTP header [RFC2616] whose name matches the value of the
Sparse Stream Pointer Header field, specified in section 3.1.1, to the syntax of the Sparse Stream

Pointer message, specified in section 2.2.5. If a match is found, the following additional processing is
performed:

 For each SparseStreamFragment field in the Sparse Stream Pointer message, the client MUST

perform the following operations:

 Search the Stream Collection data element in the Active Presentation data element to locate
the Stream Description whose Name field matches the SparseStreamName field.

 If no match can be found or if the Sparse Stream Flag of the matching Stream Description
data element is false, the client MUST enter the Final state without yielding a Fragment
Description data element.

 Compare the value of the SparseStreamTimeStamp field to the Last Downloaded
Timestamp field of the Stream Description data element.

 If the Last Downloaded Timestamp field is not set, or if the value of the
SparseStreamTimeStamp field is greater than the Last Downloaded Timestamp field, add an

entry to the Sparse Stream Notifications collection for which the Stream Description Reference
field is set to the matching Stream Description, and the Timestamp field is set to the value of

the SparseStreamTimeStamp field.

If the Sparse Stream Notifications collection is not empty, the client yields this collection to the higher
layer in addition to the Fragment Description.

3.1.6 Timer Events

None.

3.1.7 Other Local Events

None.

3.2 Server Details

The server does not maintain state and treats all arriving messages independently.

3.2.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the

explanation of how the protocol behaves. This document does not mandate that implementations
adhere to this model as long as their external behavior is consistent with that described in this
document.

https://go.microsoft.com/fwlink/?LinkId=90372

53 / 65

[MS-SSTR] - v20241119
Smooth Streaming Protocol
Copyright © 2024 Microsoft Corporation
Release: November 19, 2024

The server uses the same conceptual model as the client, specified in section 3.1.1.

3.2.2 Timers

None.

3.2.3 Initialization

There is no initialization required for the Smooth Streaming Transport Protocol layer. Successful
initialization of the underlying transport (HTTP) is a prerequisite for successful operation of the server.

The Sparse Stream Pointer Header is initialized from configuration above the Smooth Streaming
Transport Protocol layer. The configured value on the client MUST match the configured value on the
server for interoperability. <4>

3.2.4 Higher-Layer Triggered Events

None.

3.2.5 Processing Events and Sequencing Rules

The following event processing and sequencing rules apply:

 When a valid Manifest Request message arrives, the server MUST respond with a Manifest
Response message.

 When a valid Fragment Request message arrives, the server MUST respond with a Fragment
Response message. Depending on the value of the FragmentsNoun field in the Fragment
Request (section 2.2.3), the form of the FragmentResponse field, specified in section 2.2.4,

varies according to the following rules:

 If the FragmentsNoun field is a FragmentsNounFullResponse, the FragmentResponse

field MUST be a FragmentFullResponse.

 If the FragmentsNoun field is a FragmentsNounMetadataOnly, the FragmentResponse
field MUST be a FragmentMetadataResponse.

 If the FragmentsNoun field is a FragmentsNounDataOnly, the FragmentResponse field
MUST be a FragmentDataResponse.

 If the FragmentsNoun field is a FragmentsNounIndependentOnly, the
FragmentResponse field MUST be a FragmentFullResponse, and all samples in the
FragmentResponse field MUST be independently decodable, as defined in [ISO/IEC-14496-
12].

The following special processing rules apply when a Fragment Response is generated in a live
presentation:

 Requested Streams Collection: The server computes the set of all Stream Descriptions that pertain

to the fragments that are referenced in the incoming Fragment Request message.

 For each entry in the Requested Streams Collection, perform the following processing:

 If the selected item is not a child stream of another stream, do the following:

 Child Streams Collection: The server computes the set of all Stream Descriptions for which
the Parent Streams field references the selected item in the Requested Streams Collection.

https://go.microsoft.com/fwlink/?LinkId=183695
https://go.microsoft.com/fwlink/?LinkId=183695

54 / 65

[MS-SSTR] - v20241119
Smooth Streaming Protocol
Copyright © 2024 Microsoft Corporation
Release: November 19, 2024

 From each item in the Child Streams Collection, generate a SparseStreamFragment
field, specified in section 2.2.5, by setting the SparseStreamName field to the Name

field of the Stream Description data element, and setting the SparseStreamTimestamp
field to the greatest timestamp of any fragment for the corresponding stream that is

available from the server, but that is not later than the timestamp of the corresponding
requested fragment.

 Generate a SparseStreamSet field from the SparseStreamFragment fields that were
generated in the previous step.

 If the selected item is a child stream of another stream, and the requested fragment is not the
first fragment in the track, do the following:

 Generate a SparseStreamFragment field, specified in section 2.2.5, by setting the

SparseStreamName field to the Name field of the selected item. Set the
SparseStreamTimestamp field to the timestamp of the preceding fragment in the track.

 Generate a SparseStreamSet field containing a single SparseStreamFragment field, as

specified in the preceding step.

 If any SparseStreamSet fields are generated as a result of the preceding steps, generate a
SparseStreamPointer field according to the following rules:

 If the processing rules that are specified by HTTP [RFC2616] result in an HTTP header
whose name matches the value of the Sparse Stream Pointer Header field, the data
becomes the HeaderData field. Otherwise, the HeaderData and DELIMITER fields are
omitted.

 The remainder of the SparseStreamPointer field is generated from the
SparseStreamSet fields.

3.2.6 Timer Events

None.

3.2.7 Other Local Events

None.

3.3 Live Encoder Details

3.3.1 Abstract Data Model

This section describes a conceptual model of possible data organization that a live encoding
implementation maintains in order to participate in this protocol. The described organization is
provided to facilitate the explanation of how the protocol behaves. This document does not mandate

that implementations adhere to this model as long as their external behavior is consistent with that

described in this document.

The live encoder acts in accordance with the following model.

https://go.microsoft.com/fwlink/?LinkId=90372

55 / 65

[MS-SSTR] - v20241119
Smooth Streaming Protocol
Copyright © 2024 Microsoft Corporation
Release: November 19, 2024

Figure 4: Live Encoder state machine diagram

The main data elements that are required by any implementation are:

Live Server Manifest Box: Includes a live server manifest that describes tracks and metadata in an
MPEG-4 ([MPEG4-RA]) container, as specified in [ISO/IEC-14496-12].

Stream Manifest Box (optional): Responsible for enumerating all streams, ensuring that clients
wait for all the streams before beginning a broadcast, as specified in section 2.2.7.2.

File Type Box: Specifies the subtype and intended use of the MPEG-4 file, along with high-level

attributes as specified in section 2.2.7.1.

Movie: This is the media file in fragmented-MPEG-4 format, as specified in [ISO/IEC-14496-12].

Fragment: This is the media fragment, as specified in section 2.2.7.5.

3.3.2 Timers

None.

3.3.3 Initialization

An HTTP POST request from an encoder with an empty body (zero content length) using the URL as

specified in the LiveIngestRequest field (2.2.7).

The server does not send back a response until the entire POST is received. This allows for error
detection before all the data is ready, which is necessary in long live streams.

3.3.4 Higher-Layer Triggered Events

The LiveIngest point (section 2.2.7) is driven by a higher-layer implementation that ingests streams
for broadcast to the end user. The following events trigger specific behavior on the LiveIngest point:

 Open Presentation, specified by section 3.3.4.1.

 End Ingest, specified by section 3.3.4.2.

3.3.4.1 Start Stream

After a 200 HTTP response is received from the server following initialization, the encoder SHOULD
initiate a new, long-running HTTP POST request. The payload of the request MUST be the fragment
MPEG-4 ([MPEG4-RA]) stream, starting from the header boxes and followed by the fragments. The
request MUST follow the specifications in Transport (section 2.1).

If a StreamManifest (section 2.2.7.2) is provided by the encoder, the server waits until all the

enumerated streams are received before starting the broadcast. If all the streams are not received
within the defined duration time, some of the earlier streams' data MAY be discarded and lost before
initialization.

https://go.microsoft.com/fwlink/?LinkId=327787
https://go.microsoft.com/fwlink/?LinkId=183695
https://go.microsoft.com/fwlink/?LinkId=327787

56 / 65

[MS-SSTR] - v20241119
Smooth Streaming Protocol
Copyright © 2024 Microsoft Corporation
Release: November 19, 2024

3.3.4.2 Stop Stream

A started stream can be stopped only by an End-Of-Stream (EOS) signal from the encoder, a manual
shutdown command, or an internal error. To properly signify the end of a live broadcast, the encoder

SHOULD send an empty MfraBox as specified by [ISO/IEC-14496-12] with no embedded sample
entries in the Tfra box and no MfroBox following, as specified by [ISO/IEC-14496-12].

The long-running POST request SHOULD be properly terminated by closing the HTTP connection as
specified in the HTTP protocol [RFC2616].

3.3.5 Processing Events and Sequencing Rules

None.

3.3.6 Timer Events

None.

3.3.7 Other Local Events

None.

https://go.microsoft.com/fwlink/?LinkId=183695
https://go.microsoft.com/fwlink/?LinkId=90372

57 / 65

[MS-SSTR] - v20241119
Smooth Streaming Protocol
Copyright © 2024 Microsoft Corporation
Release: November 19, 2024

4 Protocol Examples

4.1 Manifest Response

The following is an example of a Manifest Response (section 2.2.2) message.

 <?xml version="1.0" encoding="UTF-8"?>
 <SmoothStreamingMedia MajorVersion="2" MinorVersion="0"
 Duration="2300000000" TimeScale="10000000">
 <Protection>
 <ProtectionHeader SystemID="{9A04F079-9840-4286-AB92E65BE0885F95}">
 <!-- Base 64-Encoded data omitted for clarity -->
 </ProtectionHeader>
 </Protection>

 <StreamIndex
 Type = "video"
 Chunks = "115"
 QualityLevels = "2"
 MaxWidth = "720"
 MaxHeight = "480"
 TimeScale="10000000"
 Url =
 "QualityLevels({bitrate},{CustomAttributes})/Fragments(video={start_time})"
 Name = "video"
 >
 <QualityLevel Index="0" Bitrate="1536000" FourCC="WVC1"
 MaxWidth="720" MaxHeight="480"
 CodecPrivateData = "270000010FCBEE1670EF8A16783BF180C9089CC4AFA11C0000010E1207F840"
 >
 <CustomAttributes>
 <Attribute Name = "Compatibility" Value = "Desktop" />
 </CustomAttributes>
 </QualityLevel>

 <QualityLevel Index="5" Bitrate="307200" FourCC="WVC1"
 MaxWidth="720" MaxHeight="480"
 CodecPrivateData = "270000010FCBEE1670EF8A16783BF180C9089CC4AFA11C0000010E1207F840">
 <CustomAttributes>
 <Attribute Name = "Compatibility" Value = "Handheld" />
 </CustomAttributes>
 </QualityLevel>

 <c t = "0" d = "19680000" />
 <c n = "1" t = "19680000" d="8980000" />

 </StreamIndex>
 </SmoothStreamingMedia>

4.2 Fragment Request

The following is an example of a Fragment Request (section 2.2.3) message. It follows the Manifest
Response (section 4.1) message example, in compliance with the sequencing rules that are specified
in section 3.1.5.

 /PubPoint.ism/QualityLevels(307200,Compatibility=Handheld)/Fragments(video=1968000)

58 / 65

[MS-SSTR] - v20241119
Smooth Streaming Protocol
Copyright © 2024 Microsoft Corporation
Release: November 19, 2024

4.3 Live Ingest Request

The following is an example of a LiveIngestRequest as specified in section 2.2.7.

 http://Server/mybroadcast.isml/streams(720p)

4.4 Stream Manifest

The following is an example of a StreamManifest as specified in section 2.2.7.2.1.

 <?xml version="1.0" encoding="utf-16"?>
 <smil xmlns="http://www.w3.org/2001/SMIL20/Language">
 <body>
 <par>
 <ref src = "Events(exampleEvent)/Streams(1080p)" />
 <ref src = "Events(exampleEvent)/Streams(720p)" />
 <ref src = "Events(exampleEvent)/Streams(480p)" />
 </par>
 </body>
 </smil>

4.5 Live Server Manifest

The following is an example of a LiveServerManifest as specified in section 2.2.7.3.

 <?xml version="1.0" encoding="utf-16"?>
 <smil xmlns="http://www.w3.org/2001/SMIL20/Language">
 <head>
 <meta name="Meta Data" content="Common meta data" />
 </head>
 <body>
 <switch>
 <video src = "Stream" systemBitrate="1450000">
 <param name="trackID" value="2" valuetype="data" />
 <param name="FourCC" value="WVC1" valuetype="data" />
 <param name="MaxWidth" value="640" valuetype="data" />
 <param name="MaxHeight" value="480" valuetype="data" />
 <param name="CodecPrivateData"
 value="250000010FD37E27F1678A27F (no line break here)
 859E80490824C4ADF5DC00000010E5A67F840"
 valuetype="data" />
 </video>
 <video src = "Stream" systemBitrate="1050000">
 <param name="FourCC" value="WVC1" valuetype="data" />
 <param name="trackID" value="2" valuetype="data" />
 <param name="MaxWidth" value="640" valuetype="data" />
 <param name="MaxHeight" value="480" valuetype="data" />
 <param name="CodecPrivateData"
 value="250000010FD37E27F1678A27F (no line break here)
 859E80490824C4ADF5DC00000010E5A67F840"
 valuetype="data" />
 </video>
 <audio src = "Stream" systemBitrate="94208">
 <param name="trackID" value="1" valuetype="data" />
 <param name="Subtype" value="WMAPRO" valuetype="data" />
 <param name="CodecPrivateData"
 value="6101020044AC0000853E00009 (no line break here)
 D0B10000A00008800000F0000000000"
 valuetype="data" />
 <param name="SamplingRate" value = "48000" valuetype="data" />
 <param name="BitsPerSample" value = "16" valuetype="data" />
 <param name="PacketSize" value = "1115" valuetype="data" />
 </audio>

59 / 65

[MS-SSTR] - v20241119
Smooth Streaming Protocol
Copyright © 2024 Microsoft Corporation
Release: November 19, 2024

 </switch>
 </body>
 </smil>

4.6 Server Ingest Request

The following is an example of a ServerIngestRequest field as specified in section 2.2.8.

Note In this case, it is assumed that the original broadcast included the EventID parameter.

 http://Server/mybroadcast.isml/Events(myEvent)/streams(720p)

60 / 65

[MS-SSTR] - v20241119
Smooth Streaming Protocol
Copyright © 2024 Microsoft Corporation
Release: November 19, 2024

5 Security

5.1 Security Considerations for Implementers

If the content that is transported by using this protocol has high commercial value, a Content

Protection System can be used to prevent unauthorized use of the content. The ProtectionElement
field can be used to carry metadata that is related to the use of a Content Protection System.

5.2 Index of Security Parameters

Security parameter Section

ProtectionElement 2.2.2.2

61 / 65

[MS-SSTR] - v20241119
Smooth Streaming Protocol
Copyright © 2024 Microsoft Corporation
Release: November 19, 2024

6 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include updates to those products.

 Windows Server 2008 operating system

 Windows Server 2008 R2 operating system

 Windows Server 2012 operating system

 Windows Server 2012 R2 operating system

Exceptions, if any, are noted in this section. If an update version, service pack or Knowledge Base
(KB) number appears with a product name, the behavior changed in that update. The new behavior
also applies to subsequent updates unless otherwise specified. If a product edition appears with the

product version, behavior is different in that product edition.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed

using the terms "SHOULD" or "SHOULD NOT" implies product behavior in accordance with the
SHOULD or SHOULD NOT prescription. Unless otherwise specified, the term "MAY" implies that the
product does not follow the prescription.

<1> Section 1.5: For requirements to enable cloud-based Smooth Streaming of High Efficiency Video
Coding (HEVC) encoded video see the amendment for HEVC [MSDOCS-SSTR-HEVC].

<2> Section 1.5: The Smooth Streaming Protocol is supported in the following IIS Media Services
Windows implementations.

IIS Media Services Version Applicable Windows Server Releases

IIS Media Services 3.0 Windows Server 2008, Windows Server 2008 R2

IIS Media Services 4.0 Windows Server 2008, Windows Server 2008 R2

IIS Media Services 4.1 Windows Server 2008, Windows Server 2008 R2, Windows Server 2012

<3> Section 3.1.3: The Windows implementation, "IIS Media Services 3.0", uses "Content-Type" as
the default value of this field to maximize compatibility with existing web browser-based HTTP APIs.

<4> Section 3.2.3: The Windows implementation, "IIS Media Services 3.0", uses "Content-Type" as
the default value of this field to maximize compatibility with existing web browser-based HTTP APIs.

https://go.microsoft.com/fwlink/?linkid=2132403

62 / 65

[MS-SSTR] - v20241119
Smooth Streaming Protocol
Copyright © 2024 Microsoft Corporation
Release: November 19, 2024

7 Change Tracking

This section identifies changes that were made to this document since the last release. Changes are
classified as Major, Minor, or None.

The revision class Major means that the technical content in the document was significantly revised.
Major changes affect protocol interoperability or implementation. Examples of major changes are:

 A document revision that incorporates changes to interoperability requirements.

 A document revision that captures changes to protocol functionality.

The revision class Minor means that the meaning of the technical content was clarified. Minor changes
do not affect protocol interoperability or implementation. Examples of minor changes are updates to
clarify ambiguity at the sentence, paragraph, or table level.

The revision class None means that no new technical changes were introduced. Minor editorial and
formatting changes may have been made, but the relevant technical content is identical to the last

released version.

The changes made to this document are listed in the following table. For more information, please
contact dochelp@microsoft.com.

Section Description
Revision
class

1.5
Prerequisites/Preconditions

10839 : Added reference to the amendment for cloud-based
Smooth Streaming of High Efficiency Video Coding (HEVC)
encoded video.

Major

mailto:dochelp@microsoft.com

63 / 65

[MS-SSTR] - v20241119
Smooth Streaming Protocol
Copyright © 2024 Microsoft Corporation
Release: November 19, 2024

8 Index

A

Abstract data model 54
 client 43
 server 52
Applicability 10

C

Capability negotiation 11
Change tracking 62
Client
 abstract data model 43
 event processing
 Fragment Request 51
 Fragment Response 51
 Manifest Request 49
 Manifest Response 49

 overview 48
 Fragment Description data element 46
 higher-layer triggered events 47
 Close Presentation event 48
 Get Fragment event 47
 Open Presentation event 47
 overview 47
 initialization 47
 local events 52
 other local events 52
 overview 43
 Presentation Description data element 43
 sequencing rules
 Fragment Request 51
 Fragment Response 51
 Manifest Request 49
 Manifest Response 49
 overview 48
 timer events 52
 timers 47

D

Data model - abstract
 client 43
 server 52

E

Event processing
 client
 Fragment Request 51
 Fragment Response 51

 Manifest Request 49
 Manifest Response 49
 overview 48
 server 53
Examples
 Fragment Request 57
 Live Ingest Request 58
 Live Server Manifest 58
 Manifest Response 57
 overview 57

 Server Ingest Request 59
 Stream Manifest 58

F

Fields - vendor-extensible 11
Fragment Description data element 46
Fragment Not Yet Available message 36
Fragment Request message 26
Fragment Response common fields 34
Fragment Response message 27
FragmentRequest message 26
FragmentResponse message 27

G

Glossary 6

H

Higher-layer triggered events
 client 47
 Close Presentation event 48
 Get Fragment event 47
 Open Presentation event 47
 overview 47
 server 53
 start stream 55
 stop stream 56

I

Implementer - security considerations 60
Index of security parameters 60
Informative references 8
Initialization 55
 client 47
 server 53
Introduction 6

L

Live Ingest message 36
LiveIngest 36
Local events

 client 52
 server 54

M

Manifest Request message 14
Manifest Response message 15
ManifestRequest message 14
ManifestResponse message 15
MdatBox 34
Messages
 Fragment Not Yet Available 36
 Fragment Request 26
 Fragment Response 27
 Fragment Response common fields 34
 FragmentRequest 26

64 / 65

[MS-SSTR] - v20241119
Smooth Streaming Protocol
Copyright © 2024 Microsoft Corporation
Release: November 19, 2024

 FragmentResponse 27
 Live Ingest 36
 LiveIngest 36
 Manifest Request 14
 Manifest Response 15
 ManifestRequest 14
 ManifestResponse 15
 MdatBox 34
 MfhdBox 28
 MoofBox 27
 ProtectionElement 17
 ServerIngest 41
 Server-to-Server Ingest 41
 SmoothStreamingMedia 16
 Sparse Stream Pointer 36
 SparseStreamPointer 36
 StreamElement 18
 StreamFragmentElement 24
 syntax 12
 TfhdBox 31
 TfrfBox 30
 TfxdBox 29
 TrackElement 20

 TrafBox 28
 transport 12
 TrunBox 32
 UrlPattern 20
MfhdBox 28
MoofBox 27

N

Normative references 7

O

Other local events
 client 52
 server 54
Overview (synopsis) 8

P

Parameters - security index 60
Preconditions 10
Prerequisites 10
Presentation Description data element 43
Processing events and sequencing rules 56
Product behavior 61
ProtectionElement 17

R

References 7
 informative 8
 normative 7
Relationship to other protocols 10

S

Security
 implementer considerations 60
 parameter index 60
Sequencing rules

 client
 Fragment Request 51
 Fragment Response 51
 Manifest Request 49
 Manifest Response 49
 overview 48
 server 53
Server
 abstract data model 52
 event processing 53
 higher-layer triggered events 53
 initialization 53
 local events 54
 other local events 54
 overview 52
 sequencing rules 53
 timer events 54
 timers 53
ServerIngest 41
Server-to-Server Ingest message 41
SmoothStreamingMedia 16
Sparse Stream Pointer message 36
SparseStreamPointer message 36

Standards assignments 11
StreamElement 18
StreamFragmentElement 24
StreamManifestBox 37
Syntax 12

T

TfhdBox 31
TfrfBox 30
TfxdBox 29
Timer events
 client 52
 server 54
Timers
 client 47
 server 53
TrackElement 20
Tracking changes 62
TrafBox 28
Transport 12
Triggered events
 client
 Close Presentation event 48
 Get Fragment event 47
 Open Presentation event 47
 overview 47
 server 53
Triggered events - higher-layer
 client 47
 server 53
TrunBox 32

U

UrlPattern 20

V

Vendor-extensible fields 11
Versioning 11

65 / 65

[MS-SSTR] - v20241119
Smooth Streaming Protocol
Copyright © 2024 Microsoft Corporation
Release: November 19, 2024

	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Overview
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Message Syntax
	2.2.1 Manifest Request
	2.2.2 Manifest Response
	2.2.2.1 SmoothStreamingMedia
	2.2.2.2 ProtectionElement
	2.2.2.3 StreamElement
	2.2.2.4 UrlPattern
	2.2.2.5 TrackElement
	2.2.2.5.1 CustomAttributesElement

	2.2.2.6 StreamFragmentElement
	2.2.2.6.1 TrackFragmentElement

	2.2.3 Fragment Request
	2.2.4 Fragment Response
	2.2.4.1 MoofBox
	2.2.4.2 MfhdBox
	2.2.4.3 TrafBox
	2.2.4.4 TfxdBox
	2.2.4.5 TfrfBox
	2.2.4.6 TfhdBox
	2.2.4.7 TrunBox
	2.2.4.8 MdatBox
	2.2.4.9 Fragment Response Common Fields

	2.2.5 Sparse Stream Pointer
	2.2.6 Fragment Not Yet Available
	2.2.7 Live Ingest
	2.2.7.1 FileType
	2.2.7.2 StreamManifestBox
	2.2.7.2.1 StreamSMIL

	2.2.7.3 LiveServerManifestBox
	2.2.7.3.1 LiveSMIL

	2.2.7.4 MoovBox
	2.2.7.5 Fragment
	2.2.7.5.1 Track Fragment Extended Header

	2.2.8 Server-to-Server Ingest

	3 Protocol Details
	3.1 Client Details
	3.1.1 Abstract Data Model
	3.1.1.1 Presentation Description
	3.1.1.1.1 Protection System Metadata Description
	3.1.1.1.2 Stream Description
	3.1.1.1.2.1 Track Description
	3.1.1.1.2.1.1 Custom Attribute Description

	3.1.1.1.3 Fragment Reference Description
	3.1.1.1.3.1 Track-Specific Fragment Reference Description

	3.1.1.2 Fragment Description
	3.1.1.2.1 Sample Description

	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Higher-Layer Triggered Events
	3.1.4.1 Open Presentation
	3.1.4.2 Get Fragment
	3.1.4.3 Close Presentation

	3.1.5 Processing Events and Sequencing Rules
	3.1.5.1 Manifest Request and Manifest Response
	3.1.5.2 Fragment Request and Fragment Response

	3.1.6 Timer Events
	3.1.7 Other Local Events

	3.2 Server Details
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Higher-Layer Triggered Events
	3.2.5 Processing Events and Sequencing Rules
	3.2.6 Timer Events
	3.2.7 Other Local Events

	3.3 Live Encoder Details
	3.3.1 Abstract Data Model
	3.3.2 Timers
	3.3.3 Initialization
	3.3.4 Higher-Layer Triggered Events
	3.3.4.1 Start Stream
	3.3.4.2 Stop Stream

	3.3.5 Processing Events and Sequencing Rules
	3.3.6 Timer Events
	3.3.7 Other Local Events

	4 Protocol Examples
	4.1 Manifest Response
	4.2 Fragment Request
	4.3 Live Ingest Request
	4.4 Stream Manifest
	4.5 Live Server Manifest
	4.6 Server Ingest Request

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Product Behavior
	7 Change Tracking
	8 Index

